- Home
- Test cases
- Baseline test cases
- BI1 - Inviscid vortex transport
- BI2 - Inviscid flow over a bump
- BI3 - Inviscid bow shock
- BL1 - Laminar Joukowski airfoil, Re=1000
- BL2 - Laminar shock-boundary layer interaction
- BL3 - Heaving & pitching airfoil
- BR1 - RANS of Joukowski airfoil
- BS1 - Taylor-Green vortex, Re=1600
- BS2 - LES channel flow Ret=590
- Advanced test cases
- Computional/meshing challenges
- Baseline test cases
- Guidelines
- Presentations
- Committee
- Previous
- Participants
- News
C1 - DLR F11
Test case leader:
Tobias Leicht, seconded by R. Hartmann, DLR
Contact:
tobias.leicht [at] dlr.de
info.hiocfd4 [at] cenaero.be
ralf.hartmann [at] dlr.de
Summary:
The DLR F-11 high lift configuration was part of the 2nd phase of the AIAA High Lift Prediction Workshop and was extensively investigated with 2nd-order state-of-the-art codes (http://hiliftpw.larc.nasa.gov/index-workshop2.html). The geometry considered for this meshing challenge is designated as configuration 4 in the original workshop and contains slat tracks and flap track fairings (see image).
The geometry is representative for a wide-body commercial aircraft with a classical three element high lift system at the wing leading and trailing edge in a landing setting. The experimental data used for the validation in the framework of HiLiftPW-2 have been measured in the atmospheric low speed wind tunnel of Airbus-Deutschland. Results of grid convergence studies using 2nd order industrial methods are available for structured and unstructured meshes for Mach number M = 0.175, Reynolds number conditions Re = 15.1 x 106 and angles of attack AoA=7°, 16° and 18.5°.
Two types of contributions are expected:
- Meshes: participants are expected to demonstrate a methodology to generate hybrid curved meshes, including high aspect ratio extrusion boundary layers, with at least a quadratic representation of the boundary. A series of meshes following specifications by the test case organiser should be provided by March 6th.
- Computations: participants are expected to provide a single simulation for each of the three conditions. The required data follows the specification of the aforementioned workshop.
Quadratic curved hybrid mesh (3.5e6 elements: prism, pyramids and tetrahedra) by Harlan McMorris from CentaurSoft, can be provided in Gmsh or CGNS format upon request (ralf [dotcenaero] hartmanndlr [dotcenaero] de).
Features and challenges:
Curved geometry
Mesh generation
Subsonic flow
Turbulent flow
Reynolds Averaged Navier Stokes (RANS)
Meshes, geometry and data: