- Home
- Test cases
- Baseline test cases
- BI1 - Inviscid vortex transport
- BI2 - Inviscid flow over a bump
- BI3 - Inviscid bow shock
- BL1 - Laminar Joukowski airfoil, Re=1000
- BL2 - Laminar shock-boundary layer interaction
- BL3 - Heaving & pitching airfoil
- BR1 - RANS of Joukowski airfoil
- BS1 - Taylor-Green vortex, Re=1600
- BS2 - LES channel flow Ret=590
- Advanced test cases
- Computional/meshing challenges
- Baseline test cases
- Guidelines
- Presentations
- Committee
- Previous
- Participants
- News
BL1 - Laminar Joukowski airfoil at Re=1000
Test case leader:
Marshall Galbraith (MIT) and Carl Ollivier-Gooch (University of British Columbia)
Contact:
galbramc [at] mit.edu
cfog [at] mech.ubc.ca
info.hiocfd4 [at] cenaero.be
Summary:
This test case concerns the laminar flow around a symmetric Joukowski airfoil at zero incidence. It is designed as a verification case of the viscous terms of the Navier-Stokes equations. Participants are required to use a sequence of provided grids, as they have been demonstrated to be able to provide the optimal convergence rate in drag. A low Reynolds number of 1,000 is employed to emphasise the viscous terms. For an adjoint consistent discretization, the optimal convergence rate is 2P. Otherwise, the convergence rate can be expected to be P+1.
Features and challenges:
Curved geometry
Steady flow
Subsonic flow
Laminar flow
Full test case description: