- Home
- Test cases
- Baseline test cases
- BI1 - Inviscid vortex transport
- BI2 - Inviscid flow over a bump
- BI3 - Inviscid bow shock
- BL1 - Laminar Joukowski airfoil, Re=1000
- BL2 - Laminar shock-boundary layer interaction
- BL3 - Heaving & pitching airfoil
- BR1 - RANS of Joukowski airfoil
- BS1 - Taylor-Green vortex, Re=1600
- BS2 - LES channel flow Ret=590
- Advanced test cases
- Computional/meshing challenges
- Baseline test cases
- Guidelines
- Presentations
- Committee
- Previous
- Participants
- News
BL2 - Laminar shock-boundary layer interaction
Test case leader:
Florent Renac (Onera)
Contact:
florent.renac [at] onera.fr
info.hiocfd4 [at] cenaero.be
Summary:
This test case considers the interaction between an incident oblique shock wave impinging a laminar boundary layer developing over a flat plate. The interaction produces a separation of the
flow and a subsequent recirculation bubble. The free stream Mach number is 2.15 and the lengthwise Reynolds number at the shock impingement location is 105. In this configuration, the flow remains 2D and stationary.
Participants are required to perform a grid/order convergence study, demonstrating convergence of the drag coefficient of the full plate, as well as the separation and reattachment point locations. Furthermore the pressure and friction coefficient along the plate will be compared. Computations should be run on a predefined mesh sequence, which will be provided on request. Additional unstructured mesh computations will also be considered.
Features and challenges:
Steady flow
Supersonic flow
Laminar flow
Full test case description: