BS1 : Direct numerical simulation of the Taylor-Green Vortex at Re = 1600

A. Mastellone¹, L. Cutrone¹, and F. Capuano²

¹ Italian Aerospace Research Centre (CIRA) ² Department of Industrial Engineering, Naples University "Federico II"

ECCOMAS 2016 – Crete Island, June 10th

SPARK LES code basic topics

- Funded by Italian HYPROB Research program (finality: to develop capabilities and tools for design of Liquid Rocket Engines (LRE))
 - Code solves fully compressible Navier-Stokes equations
 - Taylor-Green vortex test-cases
 - Kinetic energy dissipation rate
 - Contours of vorticity norm
 - Kinetic energy power spectra

SPARK-LES code features at a glance

- Fortran 2008 standard
- Fully compressible, multi-species, reacting Navier-Stokes equations (cons. form)
- Finite-volume approach on curvilinear, structured multi-block grids
- Time accurate integration: up to fourth-order standard Runge-Kutta method
- High-order linear stencils for convective fluxes
 - ✓ Second and fourth-order explicit centered scheme (2E, 4E)
 - ✓ Fourth and sixth-order compact scheme (4C, 6C)
- Second order centered scheme for diffusive fluxes
- · Jameson artificial dissipation up to fourth order and compact filters up to tenth order
- Real gas thermodynamics and Chemkin model
- Non-reflecting boundary conditions (NSCBC)
- Subgrid scale models (Smagorinsky, Wale)
- Full parallel capabilities (MPI paradigm)

Numerical schemes

- Finite volume: interpolate to interfaces cell-centered values
- General linear stencil

$$\alpha \tilde{\mathbf{U}}_{i-3/2} + \tilde{\mathbf{U}}_{i-1/2} + \alpha \tilde{\mathbf{U}}_{i+1/2} = \sum_{l=1}^{L} \gamma_l \left(\bar{\mathbf{U}}_{i-l} + \bar{\mathbf{U}}_{i+l-1} \right)$$

INTERFACES CELL CENTERS

- > Explicit schemes (α =0)
 - Simple to implement and to parallelize
 - Large stencils and poor spectral resolution
- ➤ Compact schemes (α≠0)
 - Smaller stencil with respect to an explicit scheme at same order
 - Improved resolution properties (suitable for turbulent flows)
 - Difficult to parallelize due to global domain dependence

Statement of the problem

- > Obtain interface values from cell-averaged values via a compact method
 - 1D, equally spaced domain
 - Tridiagonal, sixth-order compact scheme

$$\alpha \tilde{\mathbf{U}}_{i-3/2} + \tilde{\mathbf{U}}_{i-1/2} + \alpha \tilde{\mathbf{U}}_{i+1/2} = \gamma_1 \left(\bar{\mathbf{U}}_{i-1} + \bar{\mathbf{U}}_i \right) + \gamma_2 \left(\bar{\mathbf{U}}_{i-2} + \bar{\mathbf{U}}_{i+1} \right)$$

Parallelization of compact schemes: possible approaches

- > Algorithmic approaches: parallelization of linear system inversion
 - pipelined Thomas algorithm (PTA)
 - parallel diagonal dominant (PDD)
 - ...
 - Drawbacks: penalties in efficiency and increased programming complexity
- Boundary Approximation Approach (BAA)
 - Used in domain decomposition techniques
 - Derivation of disjoint systems that can be solved independently
 - Drawbacks: approximate solution with respect to the serial one

Parallelization of compact (1)

Parallelization of compact (2)

- \succ Linear spectral resolution analysis on an equally spaced grid of step h
- Modification of the matrix coefficients leads to altered spectral properties

$$u(x) = e^{ikx}$$

$$u'_{ex}(x) = iku(x)$$
Anti-diffusion at mid-wavenumbers
$$u'_{ex}(x) = iku(x)$$
Anti-diffusion at mid-wavenumbers
$$u'_{ex}(x) = iku(x)$$

$$u$$

- Simulations matrix
 - > Three different resolutions (64, 128, 256 cubed) and four spatial schemes analyzed
 - (12 cases)
 - Regular cartesian meshes generated by an in-house Fortran code
 - Third order explicit Runge-Kutta time advancement at CFL = 0.6
 - > No artificial dissipation or filters
 - Computations run on 64 MPI cores over a CIRA cluster

```
(CPU Intel Xeon E5-2680 @ 2.7 Ghz)
```

Parallel compact: actually based on boundary approximation approach (BAA)

Parallel performances

Parallel Speedup at different mesh resolutions and schemes

	2E	4E	4C	6C
64	51.091	42.456	37.077	36.274
128	46.216	41.067	37.763	37.262
256	50.049	44.180	40.995	40.732

- Structured grid leads to minor speedups
- > At finest mesh resolutions speedups are generally good

Taylor-Green Vortex (TGV)

- Prototype test for transition, dynamics of turbulence and decay
- Initial flow-field given by:

$$\begin{cases} u = \sin(x)\cos(y)\cos(z) \\ v = -\cos(x)\sin(y)\cos(z) \\ w = 0 \\ p = p_0 + \frac{\rho_0}{16}\left[\cos(2x) + \cos(2y)\right]\left[\cos(2z) + 2\right] \end{cases}$$

- 3D periodic box
- The flow undergoes creation of small scales due to vortex-stretching and initial distribution of vorticty
- Transition to turbulence occurs
- A turbulent decay phase follows due to action of viscosity and the absence of an external forcing

Kinetic energy decay rate : explicit schemes

Time-evolution of kinetic energy dissipation rate

$$-\frac{dE_k}{dt} = -\frac{1}{\rho_0\Omega}\frac{d}{dt}\int_{\Omega}\rho\frac{\mathbf{u}\cdot\mathbf{u}}{2}d\Omega \approx 2\frac{\mu}{\rho_0\Omega}\int_{\Omega}\mathbf{S}^d:\mathbf{S}^d d\Omega$$

Kinetic energy decay rate : compact schemes

Time-evolution of kinetic energy dissipation rate

$$-\frac{dE_k}{dt} = -\frac{1}{\rho_0\Omega}\frac{d}{dt}\int_{\Omega}\rho\frac{\mathbf{u}\cdot\mathbf{u}}{2}d\Omega \approx 2\frac{\mu}{\rho_0\Omega}\int_{\Omega}\mathbf{S}^d:\mathbf{S}^d d\Omega$$

Kinetic energy decay rate : schemes comparison in 256³ mesh

- transition to small scales (t*<7): all schemes works properly
- massimum dissipation phase (t*~8) : 2E underestimate
- dissipation phase (t*>10) : good behavior of schemes

Contour of dimensionless vorticity norm: explicit schemes comparison, 256³ mesh

Second order explicit scheme is not enough accurate

Contour of dimensionless vorticity norm: compact schemes comparison 256³ mesh

Satisfactory results

Kinetic energy power spectra at different mesh resolutions

Energy spectra are substantially independent of the scheme

> Lowest resolutions show energy pile-up at high wavenumbers

ECCOMAS 2016 – Crete Island 10/06/2016

- TGV test in order to assess code ability to describe turbulence over a wide range of energy scales
- On finest meshes results are quite satisfactory in the case of higher order schemes and a good parallel efficiency is observed
- Compacts schemes are promising, and better strategies in parallelization are currently under development

Thank you for your attention. Any question, suggestion?

