Code MIGALE state-of-the-art

A. Colombo

HiOCFD4
4th International Workshop on High-Order CFD Method
Foundation for Research and Technology Hellas (FORTH), Heraklion (Crete)
4th June 2016
...with the contribution of

Francesco Bassi¹
Alessandro Colombo¹
Lorenzo Botti¹
Francesco Carlo Massa¹
Marco Savini¹
Nicoletta Franchina¹
Antonio Ghidoni²
Gianmaria Noventa²
Marco Lorini²
Stefano Rebay²
Andrea Crivellini³
Carmine De Bartolo⁴
Alessandra Nigro⁴
Daniele Di Pietro⁵
Pietro Tesini⁶

¹ Università degli Studi di Bergamo
² Università degli Studi di Brescia
³ Università Politecnica delle Marche
⁴ Università della Calabria
⁵ University of Montpellier, France
⁶ SKF, Sweeden

Towards Industrial LES/DNS in Aeronautics
Paving the Way for Future Accurate CFD
grant agreement No.635962
Brief code summary

- Discontinuous Galerkin (DG) method on hybrid grids
- Physical frame orthonormal basis functions
- 2D/3D steady and unsteady compressible and incompressible flows
- Explicit and implicit time accurate integration
- Fixed or rotating frame of reference
- Euler
- Navier–Stokes
- RANS coupled with the k-ω (EARSM)
- Hybrid RANS/LES (X-LES)
- MPI parallelism
- Fortran language
Brief code summary

- Discontinuous Galerkin (DG) method on hybrid grids
- Physical frame orthonormal basis functions
- 2D/3D steady and unsteady compressible and incompressible flows
- Explicit and implicit time accurate integration
- Fixed or rotating frame of reference
- Euler
- Navier–Stokes
- RANS coupled with the k-ω (EARSM)
- Hybrid RANS/LES (X-LES)
- MPI parallelism
- Fortran language
Implicit accurate time integration

Several high-order temporal schemes are implemented

- Modified Extended BDF
- Two Implicit Advanced Step-point (TIAS)
- Explicit Singly Diagonally Implicit R-K (ESDIRK)
- linearly implicit Rosenbrock method

\[\text{non-linear systems solution} \]

\[\text{linear systems solution (here via GMRES)} \]

\[i) \text{ Hi-O schemes are more efficient than Lo-O ones for high required accuracy} \]

\[ii) \text{ Rosenbrock-type schemes are appealing both for accuracy and efficiency} \]

Convection of an isentropic vortex P6 solution on 50X50 el.
Rosenbrock schemes in a nutshell (I/II)

From the DG spatial discretization we obtain a system of non-linear ODEs or DAEs

\[\mathbf{M}_P(\mathbf{W}) \frac{d\mathbf{W}}{dt} + \mathbf{R}(\mathbf{W}) = 0 \]

\[\tilde{\mathbf{R}} = \mathbf{M}_P^{-1}\mathbf{R} \]

\[\mathbf{W}^{n+1} = \mathbf{W}^n + \sum_{j=1}^{s} m_j \mathbf{Y}_j \]

\[\left(\frac{\mathbf{M}_P}{\gamma \Delta t} + \mathbf{J} - \frac{\partial \mathbf{M}_P}{\partial \mathbf{W}} \tilde{\mathbf{R}} \right)^n \mathbf{Y}_i = -\mathbf{M}_P^n \left[\tilde{\mathbf{R}} \left(\mathbf{W}^n + \sum_{j=1}^{i-1} a_{ij} \mathbf{Y}_j \right) - \sum_{j=1}^{i-1} \frac{c_{ij}}{\Delta t} \mathbf{Y}_j \right] \]

\[i = 1, \ldots, s \]

only a linear system need to be solved for each stage

i.e. the Jacobian \(\mathbf{J} = \partial \mathbf{R}/\partial \mathbf{W} \) is assembled and factored only once per time step

With orthonormal basis functions (physical space) \(\mathbf{M}_P \) reduces to the identity for compressible flows with conservative variables

For other sets of variables their DOFs can be coupled within \(\mathbf{M}_P \) thus resulting in a matrix which can not be diagonal
Several Rosenbrock schemes, from order two to order six, have been compared.

No need to “exactly” solve systems: GMRES tolerance can be increased with confidence with a significant reduction of WU.

For a given order of accuracy, among the schemes considered, those with more stages are more accurate and efficient, e.g. RO5-8 vs. RO6-6.

Convection of an isentropic vortex P^6 solution on 50X50 el.

Working variables

Primitive variables to ensure the positivity of all thermodynamic variables at the discrete level.

We work with polynomial approximations not directly for \(p \) and \(T \) but for their logarithms \(\widetilde{p} = \log(p) \) and \(\widetilde{T} = \log(T) \)

In this way the computed values \(p = e^{\widetilde{p}} \) and \(T = e^{\widetilde{T}} \) are always positive

Easy to implement: almost only change \(\mathbf{M}_{P} \) ...
eXtra-Large Eddy Simulation (X-LES) in a nutshell (I/II)

Pros

• hybrid RANS\LES formulation independent from the wall distance
• use in LES mode of a clearly defined SGS based on the k-equation
• use of a k-ω turbulence model integrated to the wall

Cons

the filter width parameter is often related to the local element size

\[
\begin{align*}
\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_j}(\rho u_j k) &= \frac{\partial}{\partial x_j} \left[(\mu + \sigma \bar{\mu}_t) \frac{\partial k}{\partial x_j} \right] + P_k - D_k \\
\frac{\partial}{\partial t}(\rho \bar{\omega}) + \frac{\partial}{\partial x_j}(\rho u_j \bar{\omega}) &= \frac{\partial}{\partial x_j} \left[(\mu + \sigma \bar{\mu}_t) \frac{\partial \bar{\omega}}{\partial x_j} \right] + (\mu + \sigma \bar{\mu}_t) \left(\frac{\partial \bar{\omega}}{\partial x_k} \frac{\partial \bar{\omega}}{\partial x_k} \right) \\
&\quad + P_\omega - D_\omega + C_D
\end{align*}
\]

...an “original” interpretation for the X-LES implementation...

eXtra-Large Eddy Simulation (X-LES) in a nutshell (II/II)

\[
\frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_j} (\rho u_j k) = \frac{\partial}{\partial x_j} \left[(\mu + \sigma^* \bar{\mu}_t) \frac{\partial k}{\partial x_j} \right] + P_k - D_k
\]

\[
\bar{\mu}_t = \alpha^* \frac{\rho \bar{k}}{\bar{\omega}} \quad D_k = \beta^* \rho \bar{k} \bar{\omega} \quad \bar{k} = \max(0, k)
\]

\[
\hat{\omega} = \max \left(e^{\tilde{\omega}_r}, \frac{\sqrt{\bar{k}}}{C_1 \Delta} \right)
\]

<table>
<thead>
<tr>
<th></th>
<th>RANS</th>
<th>LES</th>
<th>ILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{\mu}_t)</td>
<td>(\alpha^* \frac{\rho \bar{k}}{\bar{\omega}})</td>
<td>(\alpha^* \rho \sqrt{\bar{k}} C_1 \Delta)</td>
<td>0</td>
</tr>
<tr>
<td>(D_k)</td>
<td>(\beta^* \rho k e^{\tilde{\omega}_r})</td>
<td>(\beta^* \rho \frac{\bar{k}^{3/2}}{C_1 \Delta})</td>
<td>0</td>
</tr>
</tbody>
</table>
X-LES of a shock BL interaction on a swept bump (AR2)

P^2 converged computations with RANS+k-ω (also in its low-Re version) and EARSM1 have been performed and used as initialization for X-LES

- **Inlet boundary conditions**
 - $p_{0i} = 92000$ Pa
 - $T_{0i} = 300$ K
 - $Re_H = 1.69 \times 10^6$

- **Outlet static pressure** used to impose the shock position (*model dependent*)

- LBE to quickly find the “right” pressure ratio

- RO3-3 for the time-accurate solution

- Filter width $\Delta = 5e-2$ (*strong influence*)

- 96 cores of our in-house Intel cluster :-(

72960 hexahedral elements
The profiles are in reasonable agreement with the experiments and the numerical results of Cahen et al.
The profiles are in reasonable agreement with the experiments and the numerical results of Cahen et al.
X-LES of the transonic flow field in the NASA Rotor 37

- P^2 computation using RO3-3
- Filter width $\Delta = 5e^{-5}$
- Boundary conditions
 - $p_{01} = 101325$ Pa
 - $T_{01} = 288$ K
 - $\omega = 1800$ rad/s
 - $Tu_1 = 3\%$
 - $\alpha_1 = 0^\circ$
- still 96 cores of our in-house Intel cluster :-(

According to our first experiences, for a practical usage of X-LES, initializing with RANS seems mandatory
X-LES of the transonic flow field in the NASA Rotor 37

RANS

X-LES ave.

X-LES inst.

30% span

30% span

30% span

30% span

30% span

30% span
X-LES of the transonic flow field in the NASA Rotor 37
X-LES of the transonic flow field in the NASA Rotor 37

Spanwise distributions

Initializing the solution from a flow field corresponding to a normalized mass flow, resulting from a RANS computation, of ≈0.98
X-LES moved towards ≈0.996
Thursday, June 9 8:30-10:30 - MS 905 - 2 (Room 20)
Alessandra Nigro, Carmine De Bartolo, Andrea Crivellini, Francesco Bassi
MATRIX-FREE MODIFIED EXTENDED BACKWARD DIFFERENTIATION FORMULAE
APPLIED TO THE DISCONTINUOUS GALERKIN SOLUTION OF COMPRESSIBLE UNSTEADY VISCIOUS FLOWS

Thursday, June 9 14:30-16:30 - MS 905 - 3 (Room 20)
Francesco Carlo Massa, Gianmaria Noventa, Francesco Bassi, Alessandro Colombo,
Antonio Ghidoni, Marco Lorini
HIGH-ORDER LINEARLY IMPLICIT TWO-STEP PEER METHODS FOR
THE DISCONTINUOUS GALERKIN SOLUTION OF THE INCOMPRESSIBLE RANS EQUATIONS

Thursday, June 9 17:00-19:00 - MS 905 - 4 (Room 20)
Antonio Ghidoni, Marco Lorini, Gianmaria Noventa, Francesco Bassi, Alessandro Colombo
DISCONTINUOUS GALERKIN SOLUTION OF THE REYNOLDS- AVERAGED NAVIER–STOKES AND
KL-KT-LOG(W) TRANSITION MODEL EQUATIONS

Friday, June 10 9:00-11:00 - MS 910 - 2 (Room 15)
Francesco Bassi, Lorenzo Botti, Alessandro Colombo, Andrea Crivellini, Antonio Ghidoni,
Marco Lorini, Francesco Carlo Massa, Gianmaria Noventa
ON THE IMPLEMENTATION OF X-LES IN A HIGH-ORDER IMPLICIT DG SOLVER

Tuesday, June 7 8:30-10:30 - CS 930 - 3 (Room 15)
Francesco Bassi, Alessandro Colombo, Andrea Crivellini, Matteo Franciolini
HYBRID OPENMP/MPI PARALLELIZATION OF A HIGH–ORDER DISCONTINUOUS GALERKIN CFD SOLVER