

Development of a DGM Solver for Scale-Resolving Simulations (8170)

MS910 – 4th Intl. Workshop on High Order CFD Methods ECCOMAS, Creta, June 9th 2016

K. Hillewaert, JS Cagnone, A.Frère, M. Rasquin & Z. Zeren Fluid Dynamics TL Contact: koen.hillewaert@cenaero.be

Doc. ref.: CMSD-NS-0XX-00

Enabling high resolution DNS/LES in industry

Academia: Spectral, FDM, ...

- High accuracy
- HPC
- Low flexibility
- Industry: FVM, FEM
 - Low accuracy
 - Robustness ~ RANS, complexity
 - High flexibility
 - Moderate HPC performance
- New CFD cores required
 - Guaranteed accuracy, low error ...
 - On unstructured meshes
 - Near BC, NMC, RSI, Chimera
 - High serial and parallel efficiency
 - Adaptivity ?

The Discontinuous Galerkin Method

Reinterpretation

- Coupled FEM formulation inside elements
- coupled by internal boundary conditions
- Structured stencil in the element

Accuracy

- Arbitrary order of accuracy (p+1) on unstructured meshes
- Small dispersion/dissipation errors
- Consistent treatment of boundaries and non-conforming connections
- Compact data / operations
 - Serial efficiency
 - High scalability

Strong scaling on BG/Q JUQUEEN (2 MPI / 32 OMP)

Argo platform

Function spaces and bases

Adaptive curved mesh database

Discretisation and data structures

Constitutive laws / physical models

Solvers and time integrators

Need for accuracy in DNS / LES

Energy cascade for DNS

Cenaero

Need for accuracy in DNS / LES *Ideal LES*

Need for accuracy in DNS / LES

Spectral properties of DGM in relation with other methods

- Order of accuracy not really important as DNS and LES often not or marginally resolved (ie. operate near mesh cut-off)
- DGM is dissipative & energy stable <-> kinetic energy conservation
 - Non-linear convection: E-flux (Jiang & Shu 1994)
 - Diffusion : coercivity of SIPDG (Arnold 01)
- Dissipation/dissipation for effective resolution (Bernard 2005)

Need for accuracy in DNS / LES

Realistic DNS and LES including numerical error

Need for accuracy in DNS and LES

Combination with VMS SGS

DNS and LES of the periodic flow over a 2D hill

- Periodic domain in span and axial direction
- Mass flow forcing

$$u_b = \frac{1}{2.035h} \int_h^{3.035h} u(y) dy \longrightarrow Re_b = \frac{u_b h}{\nu}$$

$$\left(\frac{dp}{dx}\right)^{n+1} = \left(\frac{dp}{dx}\right)^{n+1} - \frac{1}{A_c \Delta t} \left[(\dot{m}^* - 2\dot{m}^n + \dot{m}^{n-1})\right]$$

DNS and LES of the periodic flow over a 2D hill structured mesh

IGG, coarsened from structured 524k hex, ~33M dof with p=3 (1/4)

Gmsh, 2D curved and extruded 294k hexahedra, ~19M dof at p=3

Periodic flow over a 2D hill **DNS at Re=2800**

 $Re_b = 2800$, M=0.1 Scheme: DGM(4), implicit time-stepping

- **DNS Argo Unstructured 2D 19M (DG4)**
- **DNS Argo Unstructured 3D 14M (DG4)**

Periodic flow over a 2D hill LES at Re=10595

- LES Argo Unstructured 2D 19M (DG4)
- LES Argo Unstructured 3D 14M (DG4)

AS2 – DNS of LP Turbine T106A at Re=60k

Calibration experiments for transition models

- Validation on a well documented case for DNS
 - Numerous publications (Sandberg 2012/2014, Michelassi 2003, ...)
 - Inlet angle correction from 37.7° to 45.5° (Michelassi et al.)
- Similar mesh strategy on coarse and baseline meshes

AS2 - DNS of the LPT T106A at Re=60k

Vorticity and Mach number on baseline mesh

DNS of the LPT T106A at Re=60k

Comparison with Experimental Results

- Experiment (Stadtmüller)
- Argo DGM (coarse)
- Argo DGM (baseline)

VKI LS89 Wall resolution

	y ⁺	X ⁺	Elmts	DOF	Procs	Wall Time / T _c
Coarse	1.3	110	0.23M	15M	416	28.5 h
Fine	1.3	70	0.69M	44M	1380	21.7 h

Line implicit preconditioner

BDF2/ESDIRK64
Newton-GMRES
Improve preconditioning on highly stretched meshes wrt bJacobi

VKI LS89

VKI LS89

VKI LS89 MUR235

Pressure distribution

VKI LS 89

Capture transition (and impact on heat flux)

Cylinder Re=3900 Test case AS1 of the HiOCFD4

Cylinder Re=3900

Grid / temporal convergence studies on unstructured meshes

	Elements	Dof		
		P=3	P=4	
Coarse	8344	534016	1043000	
Medium	70800	4531200	8850000	
Fine	500430	32027520	6255375	

Cylinder Re=3900 Time-averaged flow field (medium p=3)

Cylinder Re=3900 Wake traverses

Cylinder Re=3900 Wake traverses

A new computational core

Accurate, efficient DNS and LES in complex geometry

Conclusions

- High precision = low dispersion / dissipation
 - « Low » cost for DNS, LES acoustics
 - Low interaction discretisation and SGS & ILES
 - unstructured, low quality mesh in complex geometry

High performance computing

- unstructured implicit & petascale
- Serial efficiency
- Efficient implicit iterative methods
- Physics agnostic!

Work in progress

- WMLES multistage compressor
 - Curved grid generation
 - Frames/NMC Cagnone (7607)

Developments

- ILES transonic turbulence (CTR)
- Synthetic inlet turbulence
- Wall modeled LES Frère (7179)
- Unsteady hp-adaptation

Cenaero

Acknowledgments

Collaborations

- Prof. Winckelmans and Prof. Chatelain UCLouvain
- Prof. Remacle UCLouvain
- Prof. Bricteux Umons
- Dr. Carton de Wiart NASA

Projects

- IDIHOM (FP7)
- Tilda (H2020)
- Sinus & HPC4WE (ERDF/RW)
- ELCI (PIA/Fr)
- PRACE Tier1 FWB

