
XFlow: A Solution-Adaptive Code

Krzysztof J. Fidkowski, University of Michigan

4th International Workshop on High-Order CFD Methods
Crete, Greece

June 4-5, 2016



Code features

DG and HDG discretizations
C-code linked to ParMETIS, MPI
Physics separate from numerics:

Compressible Navier-Stokes, RANS, shallow water, acoustics,
scalar, radiation hydrodynamics

Various time-stepping schemes:
RK, BDF, DIRK, (M)EBDF, SAMF, DG-in-time

Fully-discrete and continuous-in-time adjoints for sensitivity
studies and error estimation
Structured and unstructured goal-oriented mesh and
time-step adaptation

XFlow: A Solution-Adaptive Code 2/25



A typical output-adaptive result

adaptive iterations

±ε (error est.)

o
u
tp
u
t

cost (degrees of freedom)

raw output

corrected
output

exact output value

Initial mesh

Adapted mesh

XFlow: A Solution-Adaptive Code 3/25



Output-based adaptation is not always intuitive

Fishtail shock in M∞ = 0.95 inviscid flow over a NACA 0012 airfoil

500 1000 1500 2000
0.11

0.1105

0.111

0.1115

0.112

Number of elements

D
ra

g
 c

o
e
ff
ic

ie
n
t

exact

Mach number x-momentum adjointAdapted using drag adjoint

Adapted using residual

XFlow: A Solution-Adaptive Code 4/25



The discontinuous Galerkin method

State vector: u = [ρ, ρui, ρE, ρν̃]T

PDE: ∂tu +∇ · ~F(u,∇u) + S(u,∇u) = 0

Solution approximation on element e: uh(~x)
∣∣∣
e
≈
∑n(p)

j=1 Uejφj(~x)

uh ∈ Vh = [Vh]s, Vh =
{

u ∈ L2(Ω) : u|Ωe ∈ Pp(Ωe) ∀Ωe ∈ Th
}

element edomain Ω

Ωe x
y

TH

u(x, y)

Ne = # of elements
n(p) = # of basis fcns

p = solution approximation order
φj(~x) = jth basis function

XFlow: A Solution-Adaptive Code 5/25



Nonlinear solver

Newton-Raphson + pseudo-time continuation
Linear system at each nonlinear iteration:(

M
∆ta

+
∂R
∂U

∣∣∣
U0

)
∆U + R(U0) = 0,

U0 = initial guess, M = mass matrix,
∆ta is an artificial time step,

∆ta = CFL h/cmax

h = volume/(surface area), cmax = max characteristic speed
over quadrature points of the element
State update is under-relaxed, U = U0 + ω∆U, to keep it
physical, via a line search

XFlow: A Solution-Adaptive Code 6/25



Wall distance calculation

SA model requires d = distance to closest wall
Store d via order pwd approximation on each element
Compute d at each order pwd Lagrange node via brute force
search to identify closest face, projection to faceted face
representation, and snapping to the true geometry

 actual wallcalculated
wall distance distance

point of interest

sp

s = 2/3

s = 1s = 0

s = 1/3

position on face
s = reference space

linear facets

curved face

calculation on curved elements contours of wall distance

XFlow: A Solution-Adaptive Code 7/25



Output sensitivity to residuals: the adjoint

The lift adjoint Ψ is the sensitivity of lift to residual sources.

We have a solution U when R = 0

element e

Lift= J(U)

state U

Lift= J(U)

U

We have a solution U when R = 0

element e

What if we add a residual source, δRe?

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

We have a solution U when R = 0

resolving for the state ...

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

resolving for the state ...

We have a solution U when R = 0

ΨeδRe

δJ = ΨT
e δRe

XFlow: A Solution-Adaptive Code 8/25



Output sensitivity to residuals: the adjoint

The lift adjoint Ψ is the sensitivity of lift to residual sources.

We have a solution U when R = 0

element e

Lift= J(U)

state U

Lift= J(U)

U

We have a solution U when R = 0

element e

What if we add a residual source, δRe?

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

We have a solution U when R = 0

resolving for the state ...

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

resolving for the state ...

We have a solution U when R = 0

ΨeδRe

δJ = ΨT
e δRe

XFlow: A Solution-Adaptive Code 8/25



Output sensitivity to residuals: the adjoint

The lift adjoint Ψ is the sensitivity of lift to residual sources.

We have a solution U when R = 0

element e

Lift= J(U)

state U

Lift= J(U)

U

We have a solution U when R = 0

element e

What if we add a residual source, δRe?

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

We have a solution U when R = 0

resolving for the state ...

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

resolving for the state ...

We have a solution U when R = 0

ΨeδRe

δJ = ΨT
e δRe

XFlow: A Solution-Adaptive Code 8/25



Output sensitivity to residuals: the adjoint

The lift adjoint Ψ is the sensitivity of lift to residual sources.

We have a solution U when R = 0

element e

Lift= J(U)

state U

Lift= J(U)

U

We have a solution U when R = 0

element e

What if we add a residual source, δRe?

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

We have a solution U when R = 0

resolving for the state ...

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

resolving for the state ...

We have a solution U when R = 0

ΨeδRe

δJ = ΨT
e δRe

XFlow: A Solution-Adaptive Code 8/25



Adjoint-weighted residual as an error indicator

Fine space residual, Rh(UH
h )

Fine space adjoint, Ψh

Error indicator, εe = |ΨT
h,eRh,e(UH

h )|

Output error: δJ ≈ −ΨT
h Rh(UH

h )

Idea: adapt where εe is high, to
reduce the residual there

XFlow: A Solution-Adaptive Code 9/25



Mesh adaptation

Flow and adjoint solution

Done

Mesh adaptation

Initial coarse mesh & error tolerance

Output error estimate

Error localization

Tolerance

met?

XFlow: A Solution-Adaptive Code 10/25



h/p adaptive runs

Transonic RANS flow over a NACA 0012

XFlow: A Solution-Adaptive Code 11/25



h/p adaptive runs

DPW V

XFlow: A Solution-Adaptive Code 12/25



h/p adaptive runs

Staggered pitching/plunging airfoils; ALE, dynamic p

XFlow: A Solution-Adaptive Code 13/25



h/p adaptive runs

Flapping wing; ALE, dynamic p

XFlow: A Solution-Adaptive Code 14/25



Mesh-conforming mesh generation

Idea
Make mesh in which each edge has the same metric length

metric distance from A to B: `AB =

∫ B

A
d` =

∫ B

A

√
d~xTMd~x

e.g. BAMG = Bi-dimensional Anisotropic Mesh Generator
[1: Borouchaki, 1995]
Input: background mesh and desired metric at nodes
Output: metric-conforming mesh

⇒

XFlow: A Solution-Adaptive Code 15/25



A mesh optimization algorithm [3: Yano, 2012]

Given: current mesh, primal and adjoint solutions
Determine: metric step matrix, Sv, at each mesh vertex, v,
that produces a mesh with the smallest output error at a fixed
solution cost
Key ingredients

1 Error convergence model: Sv → output error
2 Cost model: Sv → solution cost
3 Iterative algorithm that equidistributes the marginal

error-to-cost ratio

Expect multiple iterations of optimization until error “bottoms
out” at a fixed cost; can then increase allowable cost to
further reduce error

XFlow: A Solution-Adaptive Code 16/25



Combining adaptation and optimization

1 Start with a coarse mesh at a certain cost = dof

2 Run multiple (∼ 10) mesh optimization iterations at fixed cost
Each iteration requires primal and adjoint solves
Solves are quick since starting from good initial guesses
Error will drop, then stagnate/oscillate
Use results from final run or average of last few runs

increase dof

solution iteration10 200

log(error) log(dof)

3 Increase dof cost by a prescribed factor if need more
accuracy and can afford more cost; return to step 2

XFlow: A Solution-Adaptive Code 17/25



Example: NACA 0012 in inviscid flow

Euler equations, M∞ = 0.5, α = 2◦, γ = 1.4, output = drag

Mach number contours

XFlow: A Solution-Adaptive Code 18/25



Example: NACA 0012 in inviscid flow

Euler equations, M∞ = 0.5, α = 2◦, γ = 1.4, output = drag

Initial mesh: 356 triangles, farfield @2000c

XFlow: A Solution-Adaptive Code 18/25



NACA 0012 in inviscid flow: sample run

p = 2, 15 optimization iterations at each dof

0 10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

Adaptive iteration

D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r

0 10 20 30 40 50 60
10

3

10
4

10
5

Adaptive iteration

D
e
g
re

e
s
 o

f 
fr

e
e
d
o
m

XFlow: A Solution-Adaptive Code 19/25



NACA 0012 in inviscid flow: output convergence

Compare to uniform refinement at different orders p

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1/sqrt(dof)

D
ra

g
 c

o
e
ff
ic

ie
n
t 
e
rr

o
r

 

 

Optimized: p=1
Optimized: p=2
Optimized: p=3
Uniform: p=1
Uniform: p=2
Uniform: p=3

XFlow: A Solution-Adaptive Code 20/25



NACA 0012 in inviscid flow: optimized meshes

p = 1, dof = 2000 p = 1, dof = 4000

p = 1, dof = 8000 p = 1, dof = 16000

XFlow: A Solution-Adaptive Code 21/25



NACA 0012 in inviscid flow: optimized meshes

p = 2, dof = 2000 p = 2, dof = 4000

p = 2, dof = 8000 p = 2, dof = 16000

XFlow: A Solution-Adaptive Code 21/25



NACA 0012 in inviscid flow: optimized meshes

p = 3, dof = 2000 p = 3, dof = 4000

p = 3, dof = 8000 p = 3, dof = 16000

XFlow: A Solution-Adaptive Code 21/25



Example: RAE 2822 in transonic flow

RANS-SA, M∞ = 0.73, α = 2.79◦,Re = 6.5M, output = drag

Mach number contours

XFlow: A Solution-Adaptive Code 22/25



Example: RAE 2822 in transonic flow

RANS-SA, M∞ = 0.73, α = 2.79◦,Re = 6.5M, output = drag

Initial mesh: 758 triangles, farfield @2000c

XFlow: A Solution-Adaptive Code 22/25



RAE 2822 in transonic flow: sample run

p = 2, 15 optimization iterations at each dof

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

Adaptive iteration

D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r

0 10 20 30 40 50 60
10

3

10
4

10
5

Adaptive iteration

D
e
g
re

e
s
 o

f 
fr

e
e
d
o
m

XFlow: A Solution-Adaptive Code 23/25



RAE 2822 in transonic flow: output convergence

Compare to uniform refinement at different orders p

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1/sqrt(dof)

D
ra

g
 c

o
e
ff
ic

ie
n
t 
e
rr

o
r

 

 

Optimized: p=1
Optimized: p=2
Optimized: p=3
Uniform: p=1
Uniform: p=2
Uniform: p=3

XFlow: A Solution-Adaptive Code 24/25



RAE 2822 in transonic flow: optimized meshes

p = 1, dof = 5000 p = 1, dof = 10000

p = 1, dof = 20000 p = 1, dof = 40000

XFlow: A Solution-Adaptive Code 25/25



RAE 2822 in transonic flow: optimized meshes

p = 2, dof = 5000 p = 2, dof = 10000

p = 2, dof = 20000 p = 2, dof = 40000

XFlow: A Solution-Adaptive Code 25/25



RAE 2822 in transonic flow: optimized meshes

p = 3, dof = 5000 p = 3, dof = 10000

p = 3, dof = 20000 p = 3, dof = 40000

XFlow: A Solution-Adaptive Code 25/25



Backup Slides

XFlow: A Solution-Adaptive Code 26/25



Basis choice and DG system

What basis functions to use?
DG⇒ φj not tied to element shape
We can use full-order (tri) basis on quad elements
e.g. p = 4: 25 dofs for quad basis, 15 dofs for tri basis

We lump all residuals and states into single vectors (size N),

R(U) = 0

state approx.
coefficients for

basis function n
element e andU = element e

Ue1
Ue2

UeNpe

Uen basis fcn n ...
U2

Us

U1

numbers needed to describe s order p
polynomials inside element e

XFlow: A Solution-Adaptive Code 27/25



Nonlinear solver: line search

1 Given: U0 and ∆U.
2 Compute ωphys = maximum fraction such that U0 + ωphys∆U

remains physical. This involves checks at quadrature points
of each element.

3 Set ω = min(1, ωphys). If ω < 1, set ω = ωβphys, βphys < 1.
4 While ω > ωmin and ‖R(U0 + ω∆U)‖ > βresidual‖R(U0)‖: set

w = wβline, where βline < 1.
5 If ω < ωmin, do not update, and set CFL = CFLβCFL,decrease.
6 If ω ≥ ωmin, take the update: U = U0 + ω∆U, and if ω = 1,

raise the CFL: CFL = CFLβCFL,increase.

Parameters:

βphys = 0.5, βresidual = 2.0, βline = 0.5, ωmin = 0.24,

βCFL,increase = 1.2, βCFL,decrease = 0.1.

XFlow: A Solution-Adaptive Code 28/25



Output error estimation

We want: δJ = JH(UH)− J(U)

This is the difference between J computed with the discrete
system solution, UH, and J computed with the exact solution, U

We’ll settle for: δJ = JH(UH)− Jh(Uh)

This is the difference in J relative to a finer discretization (h)

coarse space: → RH(UH) = 0︸ ︷︷ ︸
NH equations

→ UH︸︷︷︸
state ∈ RNH

→ JH(UH)︸ ︷︷ ︸
output (scalar)

fine space: → Rh(Uh) = 0︸ ︷︷ ︸
Nh equations

→ Uh︸︷︷︸
state ∈ RNh

→ Jh(Uh)︸ ︷︷ ︸
output (scalar)

XFlow: A Solution-Adaptive Code 29/25



The adjoint-weighted residual

UH
h solves a perturbed fine-space problem

find U′h such that: Rh(U′h)−Rh(UH
h )︸ ︷︷ ︸

δRh

= 0 ⇒ answer: U′h = UH
h

The fine-space adjoint, Ψh, (p + 1, solved exactly) then tells
us to expect an output perturbation of

Jh(UH
h )− Jh(Uh)︸ ︷︷ ︸
≈ δJ

= ΨT
h δRh = −ΨT

h Rh(UH
h )

This equation assumes small perturbations (e.g. if nonlinear;
linearization is about UH

h )
In summary, we have an adjoint-weighted residual:

δJ ≈ −ΨT
h Rh(UH

h )

XFlow: A Solution-Adaptive Code 30/25



Mesh adaptation using a metric field

Unstructured meshes offer more geometric and adaptive
flexibility over structured ones
Resolution information: size and shape of an element
This can be encoded in a metric field [1: Borouchaki, 1995]
[2: Pennec, 2006] over the domain
We are interested in an adaptive method where the mesh is
regenerated at each iteration using the current mesh and
information from the solution
Key ingredients:

1 Metric-conforming mesh generator
2 Solution-based metric specification

XFlow: A Solution-Adaptive Code 31/25



Error convergence model

Ee0 = current output error indicator on element e (from AWR)
Se = proposed metric step matrix on element e

Model for error after metric modification with Se:

Ee = Ee0 exp [tr(ReSe)]

Re = error convergence rate tensor (identified by sampling)
Note, this is a generalization to anisotropic shape changes of
the more familiar isotropic model,

Ee = Ee0

(
h
h0

)r

= Ee0 exp [r log(h/h0)]

Sum over elements to get the total error on the mesh,

E =
∑

e

Ee

XFlow: A Solution-Adaptive Code 32/25



Cost model

cost = degrees of freedom (dof) in solution approximation

Assume p = approximation order = same for all elements
Ce0 = current cost on element e, e.g. (p + 1)(p + 2)/2
New cost after application of step matrix Se,

Ce = Ce0 exp
[

1
2

tr(Se)

]
︸ ︷︷ ︸

Area0/Area

Note, the cost is just scaled by Area0/Area = # new elements
occupying the original area of element e
Sum over elements to get the total cost on the mesh,

C =
∑

e

Ce

XFlow: A Solution-Adaptive Code 33/25



References I

[1] H. Borouchaki, P. George, F. Hecht, P. Laug, and E Saltel.
Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie I: Algorithmes.
INRIA-Rocquencourt, France. Tech Report No. 2741, 1995.

[2] Xavier Pennec, Pierre Fillard, and Nicholas Ayache.
A riemannian framework for tensor computing.
International Journal of Computer Vision, 66(1):41–66, 2006.

[3] Masayuki Yano.
An Optimization Framework for Adaptive Higher-Order Discretizations of Partial Differential Equations on Anisotropic
Simplex Meshes.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2012.

XFlow: A Solution-Adaptive Code 34/25


	Appendix

