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—High-order CFD Code
Code description

» Governing equations: Compressible Navier-Stokes equations

» Discretization scheme: high-order correction procedure via
flux reconstruction (CPR)

» Numerical Flux: Roe scheme for inviscid terms and BR2 for
viscous terms

» Divergence computation method: Chain rule (CR) for
inviscid fluxes and the Lagrange polynomials (LP) for viscous
fluxes

» Solution method: Backward Euler — Full Newton
» Nodes: GLL
» Parallelization: Open-MPI

Farshad Navah 4th High-order CFD Workshop June, 2016 3/32



McGill University

—High-order CFD Code
Code description

Recent Developments (Farshad Navah)

» Governing equations: Compressible Reynolds-averaged
Navier-Stokes equations closed by the negative
Spalart-Allmaras (SA) turbulence model (ICCFD7-1902)

» Solution method: 15-digits accurate analytical Jacobian of
RANS-SA(pos/neg), verified via complex step

» Code verification: Method of manufactured solutions (Euler,
NS, RANS-SA)
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— Code verification

Code verification in CFD
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— Code verification

Simulation Step Sources of Error in CFD
[} == Modelling error

’ Conceptual model ‘

(2 =  Programming & Discretization errors

’ Numerical model ‘

() = Round-off & Iterative convergence
errors

’ Numerical solution ‘
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— Code verification

V&V Sources of Error in CFD

’ Model validation ‘ <= Modelling error

fr
’Solution verification‘ <= Discretization error

1)
’ Code verification ‘ <=  Programming errors

)
’Solution process‘ <= Round-off & Iterative convergence

€errors
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— Code verification

Methods of Code Verification in CFD

» Method of analytical solutions
Pros: -non-intrusive
Cons: -limited range of models (no RANS solutions)
-(often) over-simplified flows (ex: Couette flow)

» Method of manufactured solutions (MMS)
Pros: -Covers all possible models/flow regimes
-Verifies targeted boundary conditions
-Allows for debugging
Cons: -Creation of a proper MS is delicate wrt to model
validity /numerical stability, etc.
-Deployment needs expertise
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NS solver verification via MMS

Examples of Code and Solution Verification

Focus: Discretization and Programming Errors

o Round-off error

) —— Residual norm is at least
o lterative convergence error

3 orders of magnitude
lower than error norm
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NS solver verification via MMS

Manufactured solution:
pMs = po + px sin(apemx/L)  + py cos(apymy/L) + pay cos(appymx/L) cos(apwymy/L)
Upms = uo +ug sin(auzmx/L) 4 uy cos(auymy/L) + tgy cos(auaymx/L) cos(auzymy/L)

Vs = vy + vy cos(aymx/L) 4 vy sin(awymy/L) + vy c08(ayayma/L) cos(ayzymy/L)

( ) )
Prys= po +ps cos(apzmr/L) + py sin(apymy/L) + pay cos(apzyma/L) cos(apzymy/L)
1
Eys = Pus/((v—1)pms) + §(U]2WS+V]3[S)

Domain:
Q= 10,12
Grids:

Series of doubling isotropic quads
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— Code verification

NS solver verification via MMS

Viscous - (Full NS)

Solution: subsonic Viscosity: u = 0.001

Boundary conditions: weak Dirichlet
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N n MMS

S solver verifica

pE error distribution versus grid refinement for P4
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NS solver verification via MMS
NS solver verification

Order of accuracy - P1
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NS solver verification via MMS
NS solver verification

Order of accuracy - P2
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NS solver verification via MMS
NS solver verification

Order of accuracy - P3
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NS solver verification via MMS
NS solver verification

Order of accuracy - P4
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NS solver verification via MMS
NS solver verification

Order of accuracy - P5
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NS solver verification via MMS
NS solver verification

Order of accuracy - P3¢, — 2.0 x ¢,
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— Code verification
Example of solution verification

Example of solution verification
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Example of solution verification

Turbulent Boundary Layer from TMR
2D zero-pressure-gradient flat plate with Re = 5 x 10%, Ma = 0.2,
Xoo = 0.3 and x,, = 0:

Cat Plate Boundary Conditions,
M=0.7.Re_=5 rmilliun (=13, T, = 540 R

; farfield Riemann BC
- H —— PUl,-1.02828, P —1.0. -

05 A=At L — ‘r".ﬁ‘rf.'.}f:."g:rléf.‘”%

: symmetry adigbatic sulid wall
ol =

[ ctart of plate at x=0
B 5 S s 5

Figure: Domain and boundary conditions description

Discretization:

5 levels of h refinement
3 levels of p refinement: P1, P2 and P3
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— Code verification
Example of solution verification
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—BS1 - DNS of the Taylor-Green Vortex

BS1 - DNS of Taylor-Green Vortex
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—BS1 - DNS of the Taylor-Green Vortex

Code optimization

CPR on Tensor-products — Very sparse D and L operators

BR2 on Tensor-products — Interior Penalty.

TGV for P3 — 64 is 5 times cheaper after optimization
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—BS1 - DNS of the Taylor-Green Vortex

12 simulations

Resolution: 643, 1283, 2563  (based on dofs)

Polynomial: P3, P4, P5, P9
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BS1 - DNS of the Taylor-Green V.

Kinetic Energy, Ej, vs t*
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BS1 S of the Taylor-Green

Kinetic energy dissipation, —0FEy/0t, vs t*
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BS1 - DNS of the Taylor-Green

Enstrophy, €, vs time, t*
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—BS1 - DNS of the Taylor-Green Vortex
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—BS1 - DNS of the Taylor-Green Vortex

Vorticity isocontours at /Lo = —m and t* =8  Res = 2563
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—BS1 - DNS of the Taylor-Green Vortex

Energy spectrum
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—BS1 - DNS of the Taylor-Green Vortex

Work units vs DOFs
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—BS1 - DNS of the Taylor-Green Vortex

Thank you for your attention!

Questions?
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