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Outline

= Theory

o Key concepts: well-posedness and stability

o The SBP-SAT technique for an illustrative model problem
= Features

o Technical details

o Performance and scalability

o Some new developments

= Similarities with dG (if time permits)
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4 building blocks for a stable and high order
accurate finite difference scheme

1. The continuous energy method for well-posed boundary or interface
condtions that yield an energy estimate.

2. Summation-By-Parts (SBP) operators that mimic integration-by-
parts.

3. Weak implementation of boundary/interface conditions using the
Simultaneous Approximation Term (SAT) technique.

4. The discrete energy method (DEM) and choice of penalty terms.




Where, how many and what kind of B.C ?

As the most straightforward example, consider the advection equation:
u+au =0, O=sx=<l.
By multiplying with u and integrating over the domain we obtain:
2 2 2
e} = a -,

= One boundary condition at x=0 if a>0.
= One boundary condition at x=1 if a<0.
= No boundary condition if a=0.

= Well posed if u = g(¢) at appropriate position.



The finite difference SBP operators

Continuous case
1
(u,vy) = / uvpdr = (uv) =1 — (UV)z—0 — (Ug, V)
0

Discrete case

(U,DV)p =UTPDV = UnVy — UsVy — (DU, V) p

DU =P 'QU, P=P">0, Q+Q" =D, D =diag[-1,0..0,1]




The finite difference SBP operator

The second order accurate case.
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= For higher orders, more involved closures at the boundaries.
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= Almost skew-symmetric, lower accuracy at the boundaries.



The SAT techniqgue and DEM for stability

The continuous problem

ur+u, =0, t>0, 0<zx<1, u(0,t)=g(t).

|ul|7 = g(t)* —u(1,¢)>.

The semi-discrete approximation

Vi + PQV = P~ Yo (Vo(t) — g(t))]

Stability

V(2 = g(t)> — V()2 + R, R(oc=—1)=—(Vo(t) — g(t))> <0.



The SBP-SAT technique in multiple dimensions

w,+D F+D G =SAT
Tensor product form using Kronecker products

D =D,®I,®I,) D =(1&®D ®I,)

The SAT term imposes the boundary conditions U = g,,V = g3,Ty = g, weakly

SAT = P'E, |(H,w~-&)+(Hyw-g)+(D,H,w-g,)
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Complex Geometries

Landers fault

Complex geometry: Nasty geometry: Hybrid

Multiblock method, structured-unstructured
curvilinear mesh, smooth method, weak interface
transform to cube, weak conditions.

interface conditions.



The "BIG PICTURE”

- Make sure PDE is well posed and have an energy
estimate (boundary/interface conditions).

- Make a curvilinear multi-block mesh. Transform
curvilinear blocks to cubes.

- Discretize each coordinate direction using SBP
operators and SAT boundary/interface conditions.

- Semi-discrete ODE: U, +A(U)U=F, t=0

- Energy stability guarantee all eigenvalues to A ok.

- Time-integration, RK4 standard.



Features
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Technical details

Main characteristics

Energy stable SBP/SAT/FDM of orders 2, 3, 4, 5 and 6.
Multi-block structured grids, no differentiation across blocks.
Both classical and DRP SBP operators available.

RK4 in time, SBP-SAT in time and multi-grid for time-space
soon.

= Details

©)

©)

MPI-parallell, Fortran 2003

Intel Math Kernel library (MKL) for linear algebra (BLAS)
operations.

Reproducable results: binary and output files are 'tagged’ with
relevant info (compiler, flags/options, date, host, etc.).




Performance and scalability

= Strong scaling when coarse grained i.e. many gridpoints/core
(twice as fast with twice the number of cores).

= Weak scaling when fine-grained i.e. few gridpoints/core (same
time for twice as large problem with twice the number of cores).

= Tested for 2048 cores and still scaling well (10’ gridpoints).
= 3rd order method costs 2.5% more than 2nd order method.

= 4th order method costs 11% more than 2nd order method.



Euler "converges” to Navier-Stokes

equidistant grid, a=1, ¢=0.1
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Dispersion Relation Preserving SBP

Operators
(PhD student Viktor Linders)
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SBP-SAT in time
ug =Au, u(0)=fand0<t<T

The numerical approximation using SBP-SAT is

P1QU = \U + P~ Y(a(Uy — f))ép.

Continuous estimate

w(T)* = 2Re(N)|[ul|* =[£I

Discrete estimate

Un[* = 2ReN)||U||% = | f|* = |Uo — £

Almost identical and optimally sharp estimates.
Unconditional stabillity, up to 10th order accurate.
JCP 2013. 2014



Multi-grid with SBP Preserving Restriction

and Prolongation Operators
(PhD student Andrea Ruggio)
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Thank you for listening !
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