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Formulation

We consider well-posed initial boundary value problems of the form,

ut + fx + gy = h1(x⃗, t), Lu = h2(x⃗, t) x⃗ ∈ δΩ, u(x⃗, 0) = h3(x⃗).

Both the finite difference and finite volume approximations lead to,

PU⃗t + QxF⃗ + QyG⃗ = H⃗1(h1) + H⃗2(Lu − h2), U⃗(0) = H⃗3. (0.1)
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Outline 

 
§  Theory 

o  Key concepts: well-posedness and stability 

o  The SBP-SAT technique for an illustrative model problem 

§  Features 
o  Technical details 

o  Performance and scalability 

o  Some new developments 

§  Similarities with dG (if time permits) 
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ut + fx + gy = h1(x⃗, t), Lu = h2(x⃗, t) x⃗ ∈ δΩ, u(x⃗, 0) = h3(x⃗).

Both the finite difference and finite volume approximations lead to,
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4 building blocks for a stable and high order 
accurate finite difference scheme  

 
1.  The continuous energy method for well-posed  boundary or interface 

condtions that yield an energy estimate. 

2.  Summation-By-Parts (SBP) operators that mimic integration-by-
parts. 

3.  Weak implementation of boundary/interface conditions using the 
Simultaneous Approximation Term (SAT) technique. 

4.  The discrete energy method (DEM) and choice of penalty terms. 
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Where, how many and what kind of B.C ?  

§  One boundary condition at x=0 if a>0. 
§  One boundary condition at x=1 if a<0. 

§  No  boundary condition             if a=0. 
§  Well posed if                 at appropriate position.  

As the most straightforward example, consider the advection equation: 

ut + aux = 0, 0 ≤ x ≤1.

By multiplying with u and integrating over the domain we obtain: 

u
t

2
= aux=0

2 − aux=1
2

u = g(t)
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The finite difference SBP operators 1st order SBP (summation by parts) operators

Continuous case

(u, vx) =
� 1

0
uvxdx = (uv)x=1 � (uv)x=0 � (ux, v)

Discrete case

(⇣U,D⇣V )P = ⇣UT PD⇣V = UNVN � U0V0 � (D⇣U, ⇣V )P

D⇣U = P�1Q⇣U, P = PT > 0, Q + QT = D, D = diag[�1, 0..0, 1]
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The finite difference SBP operator 

 
§  For higher orders, more involved closures at the boundaries. 

§  Almost skew-symmetric, lower accuracy at the boundaries. 

Example

The 1st SBP operator in the second order case.

Q=
1
2

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�1 1

�1 0 1

. . .

. . .

�1 0 1

�1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

, P =�x

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

1
2

1

.

.

1
1
2

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

11

The second order accurate case. 
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The SAT technique and DEM for stability Weak boundary conditions and energy method

The continuous problem

ut + ux = 0, t ≥ 0, 0 ≤ x ≤ 1, u(0, t) = g(t).

||u||2t = g(t)2 − u(1, t)2.

The semi-discrete approximation

V⃗t + P−1QV⃗ = P−1[σ(V0(t) − g(t))]e⃗0

Stability

||V⃗ ||2t = g(t)2 − VN (t)2 + R, R(σ = −1) = −(V0(t) − g(t))2 ≤ 0.
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wt +DxF +DyG = SAT

The SBP-SAT technique in multiple dimensions 

Dx = (Dx ⊗ Iy ⊗ I4 ) Dy = (Ix ⊗Dy ⊗ I4 )

Tensor product form using Kronecker products 

The SAT term imposes the boundary conditions                                        weakly 

SAT = Py
−1E0 H2w− g2( )+ H3w− g3( )+ DyH4w− g4( )"# $%

u = g2,v = g3,Ty = g4
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Complex Geometries 

Complex geometry: 
Multiblock method, 
curvilinear mesh, smooth 
transform to cube, weak 
interface conditions. 

Nasty geometry: Hybrid 
structured-unstructured 
method, weak interface 
conditions. 

Landers fault  
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Ut + A(U)U = F, t ≥ 0

 

§  Make sure PDE is well posed and have an energy 
estimate (boundary/interface conditions). 

§  Make a curvilinear multi-block mesh. Transform 
curvilinear blocks to cubes. 

§  Discretize each coordinate direction using SBP 
operators and SAT boundary/interface conditions. 

§  Semi-discrete ODE: 

§  Energy stability guarantee all eigenvalues to A ok. 

§  Time-integration, RK4 standard. 

The ”BIG PICTURE” 



Features 
 

Formulation

We consider well-posed initial boundary value problems of the form,

ut + fx + gy = h1(x⃗, t), Lu = h2(x⃗, t) x⃗ ∈ δΩ, u(x⃗, 0) = h3(x⃗).

Both the finite difference and finite volume approximations lead to,

PU⃗t + QxF⃗ + QyG⃗ = H⃗1(h1) + H⃗2(Lu − h2), U⃗(0) = H⃗3. (0.1)
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Technical details 
 
§  Main characteristics 

o  Energy stable SBP/SAT/FDM of orders 2, 3, 4, 5 and 6. 

o  Multi-block structured grids, no differentiation across blocks. 

o  Both classical and DRP SBP operators available. 

o  RK4 in time, SBP-SAT in time and multi-grid for time-space 
soon. 

§  Details 
o   MPI-parallell, Fortran 2003 

o  Intel Math Kernel library (MKL) for linear algebra (BLAS) 
operations. 

o  Reproducable results: binary and output files are 'tagged' with 
relevant info (compiler, flags/options, date, host, etc.). 
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Performance and scalability 

 
§  Strong scaling when coarse grained i.e. many gridpoints/core 

(twice as fast with twice the number of cores). 

§  Weak scaling when fine-grained i.e. few gridpoints/core (same 
time for twice as large problem with twice the number of cores). 

§  Tested for 2048 cores and still scaling well (       gridpoints). 

§  3rd order method costs 2.5% more than 2nd order method. 

§  4th order method costs 11% more than 2nd order method. 

107
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JCP 2008, 2012, Comp. Fluids 2010 
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Navier-Stokes, TGV,   

Dispersion Relation Preserving SBP 
Operators 

The advection equation 

JCP 2015, AIAA 2016 

643

(PhD student Viktor Linders) 
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SBP-SAT in time 

 

Discrete estimate 

 
§  Almost identical and optimally sharp estimates. 
§  Unconditional stabillity, up to 10th order accurate. 

Continuous estimate 

The numerical approximation using SBP-SAT is 

JCP 2013, 2014 
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8th order, SBP preserving 
and conventional   

Multi-grid with SBP Preserving Restriction 
and Prolongation Operators 

8th order, with and  
without multi-grid 

(PhD student Andrea Ruggio) 



Thank you for listening ! 
 
 

Formulation

We consider well-posed initial boundary value problems of the form,
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