Aghora : A high-order DG solver for turbulent flow simulations

Marta de la Llave Plata, Florent Renac, Emeric Martin, Marie-Claire le Pape Odile Labbé, Mathieu Lorteau, Raphaël Blanchard, Brijesh Pinto, Vincent Couaillier

4th International Workshop on High-Order CFD Methods 4-5 June, Heraklion, Crete.

- Overview of Onera's CFD activities
- Aghora : a high-order DG solver for compressible flow
 - Current status of the solver
 - Turbulent flow simulations using Aghora (RANS, DNS, LES)
 - hp-adaptive simulations using Aghora
- The new prototype MICA : HO DG Multiscale InCompressible Adaptive solver
 - Current status of the MICA solver
 - DNS of the Taylor-Green Vortex (TGV)
 - Preliminary results from wavelet-based adaptive simulations
- On-going work and main perspectives

Onera provides the aerospace industry with technical expertise and innovative CFD software:

- Aircrafts and helicopters : Airbus
- Turboengines : Safran
- Water turbines : EDF
- Overview of ONERA's CFD activities:
 - Development of hybrid/composite structured and unstructured FV methods: elsA for aerodynamics, Cedre for aerothermal applications.
 - Development of a high-order CFD demonstrator based on compact variational methods: Aghora
- The Aghora high-order solver: motivation
 - Develop the next generation of industrial software : European projects TILDA (HO methods for LES using HPC) and SSeMID (Stability and Sensitivity Methods for Industrial Design, ITN), French project ELCI (coordinated by BULL) on pre/co/post-processing of HO solutions.
 - Enhance the capacity of CFD solvers for tackling complexity (physics, geometry): very low dissipation and dispersion errors, accurate representation of curved boundaries.
 - Designed for modern HPC architectures (multi-core, accelerators, etc.) : parallel efficiency thanks to compact schemes.

ONERA Aghora.

- The full set of compressible Navier-Stokes equations can be solved in 3D.
- Modal approach: the degrees of freedom (DoFs) are the coefficients of the polynomial expansion (U^k_j) → natural implementation of multiscale turbulence models and p-adaptation.

$$\mathbf{u}_h(\mathbf{x},t) = \sum_{k=1}^{N_p} \phi^k(\mathbf{x}) \mathbf{U}_j^k$$

 Nodal approach (Raphaël Blanchard, PhD 2013-2016): Efficient evaluation of integrals at collocation points → validated on DNS of the TGV & RANS.

- Multi-element meshes (hexahedra, tetrahedra, prisms).
 - Jacobi polynomials for straight-sided elements (parallelepipeds, tetrahedra).
 - Modified Gram-Schmidt orthogonalization for general-shaped elements.
- Local Lax-Friedrichs, Roe, etc. numerical fluxes to approximate the convective fluxes across the interfaces.
- Discretization of viscous fluxes by BR2¹ scheme or Symmetric Interior Penalty method, SIP².

F. Bassi & S. Rebay, J. Comput. Phys. (1997)
R. Hartmann & P. Houston, J. Comput. Phys. (2008)

The Aghora code: current status

- Explicit time integration : up to 4th-order Runge-Kutta schemes
- Implicit time integration : several time-integration strategies³ (solution of linear system by GMRES+left pre-conditioning (mixed precision algorithms), ESDIRK.
- Economical quadrature rules⁴ (use element symmetries to reduce number of integration points)
- Shock capturing methods (Hartmann & Houston 2002, Hartmann 2013, Guermond et al. 2011)
- General thermodynamics : $p = p(\rho, \rho e)$ (e.g. stiffened gas, wan der Waals EOS)
- Turbulence modelling:
 - RANS Wilcox $\kappa \omega$ model (Wilcox 1993): $\kappa \omega$ and $\kappa log(\omega)$ formulations (Bassi et. al 2005, 2009, Hartmann 2012). Spalart-Allmaras model.
 - DNS and LES simulations : Standard LES models (Smagorinsky, WALE), Variational Multiscale Simulation, VMS
 - Turbulent injection conditions: Synthetic Eddy Method (SEM)

Strong scalability tests

Numerical experiments using the Taylor-Green vortex at $Re = 1\,600$ (96³ elements, DG-P1 to DG-P4, SSP RK4)

- Sensitivity of the polynomial degree p on the speedup with REF0 version on Curie
 - Strong scalability analysis on a mesh with 336 elements
 - $\, \bullet \,$ Ratio elts/ghosts per domain \sim 4 at the largest scale
 - Receive-send message frequency (measured with 13 824 cores)
 - *p* = 1, ∼ 41 messages/s
 - p = 2, ~ 15 messages/s
 - *p* = 4, ∼ 02 messages/s
 - On 21 952 cores with p=2, efficiency of the speedup $\sim 88\%$

Aghora.

RANS using Spalart-Allmaras model with shock capturing

Shock/boundary layer interaction in a 3D transonic channel (F. Renac): $Re = 1.7 \times 10^6$, $p_{out}/p_{i,0} = 0.64$

RANS/SA DG-P1 to DG-P3 (0.3 to 1.5 MDOFs)

Iso-contours of Mach number and wall pressure.

Decaying turbulence in a periodic box Mathieu Lorteau (post-doc)

Ref. Resolution	Simulation	# Elts.	Order	# Mdofs	Δt	CPU time (kWU)
64 ³	STR-10p5	1 000	6	0.22	1.910-3	8.2
64 ³	UNS-10p5	4 084	6	0.23	$1.1 10^{-3}$	9.3
1283	STR-21p5	9 261	6	2.00	8.910-4	125.5
128 ³	UNS-20p5	31 225	6	1.75	4.210-4	175.7
256 ³	STR-42p5	74 088	6	16.0	4.410-4	1877.8
256 ³	UNS-40p5	229 004	6	12.8	1.810^{-4}	2944.8

Turbulent kinetic energy

Enstrophy

DNS and LES computations using Aghora: 2D periodic hill

2D periodic hill at $Re_b = 2800$ up to 37000 : DNS & LES based on WALE approach DG-P3 to DG-P5 on two levels of mesh refinement (0.5 to 4.2 MDOFs)

Fine 4th-order mesh 64 \times 32 \times 32

Vorticity magnitude $Re_b = 2\,800$

Vorticity magnitude $Re_b = 10595$

Profiles of mean vertical velocity $\langle V \rangle$ and Reynolds stresses $\langle u'u' \rangle$ at station x=0.5h

DNS and LES computations using Aghora: 3D VKI LS89 LPT

3D VKI LS89 LPT (Odile Labbé) $Re_c = 1.25 \, 10^6$, under-resolved DNS DG-p2 (7.7 Mdofs)

iso-surfaces of the Q-criterion coloured by Mach number

Mach number distribution around blade

Aghora: A high-order DG solver

ahora.

DNS computations using Aghora : hp-adapted channel at $Re_{ au}=590$

Jean-Baptiste Chapelier (PhD, 2010-2013)								
Numerical method	# DOFs	# Integration points	order					
DG	$7.02 imes10^5$	$1.12 imes10^6$	p = 4, 5, 7					
Spectral	$1.28 imes10^8$	4.32×10^8	-					

Q-criterion coloured by streamwise velocity

Mesh adaptation: the h-adaptive algorithm

Göktürk Kuru (Marie Curie PhD 2013-2016)

Adaptive simulation of the inviscid flow over a 2D bump Refinement indicator \rightarrow entropy error

Solve \rightarrow Estimate \rightarrow Mark \rightarrow Refine

- Find the discrete solution
- Estimate the error
- Mark elements for refinement
- Refine marked elements

Brijesh Pinto (PhD, 2013-2016)

- High-order methods.
 - DG-SEM : Discontinuous Galerkin Spectral Element Method.
 - Cartesian elements so far (methodology can easily be extended to HO elements).
 - Nodal/Lagrange basis functions at the element quadrature points : Gauss-Legendre-Lobatto (GLL) points.
 - Numerical fluxes used for inter-element coupling (centred/upwind schemes).
 - Parallel implementation.
- Robustness
 - Discontinuous velocity-pressure, stabilised discretization via penalty.
 - $P_N P_N$ velocity-pressure space on non-staggered grids as opposed to $P_N P_{N-2}$ on staggered grids.
 - Fractional step methods for pressure-velocity coupling (semi-explicit type procedure).
 - Time integration via 2nd-order implicit-explicit BDF2 scheme (IMEX-BDF2).
- Efficiency
 - Mesh adaptation via wavelet thresholding (*lazy* wavelet transform, WT)
 - Inexpensive and accurate error estimator, well suited to unsteady problems (DNS,LES)

ONERA Aghora.

DNS simulation using MICA : Taylor-Green Vortex at $Re = 1\,600$

Ref. Resolution	Simulation	# Elts.	Order	# dofs
64 ³	12p4	12 ³	5	60 ³
64 ³	7p8	7 ³	9	63 ³
128 ³	24p4	24 ³	5	120 ³
128^{3}	14p8	14 ³	9	126 ³
256 ³	48p4	48 ³	5	240 ³
256 ³	28p8	28 ³	9	252 ³

Brijesh Pinto (PhD, 2013-2016)

Evolution of energy dissipation.

Wavelet-based Multi-resolution analysis

Brijesh Pinto (PhD, 2013-2016)

Wavelet-based Multi-resolution analysis (MRA)

- A sequence of spaces for approximation of finite energy functions.
- Non-linear approximation via thresholding.
- Consists of *scaling functions*(ϕ) \rightarrow Basis for **coarse space** \rightarrow Low pass filter
- Consists of wavelets(ψ) \rightarrow Basis for fine space \rightarrow Band pass filter

$$f(x) \simeq f_{\geq}^{J}(x) = \sum_{k} s_{k}^{J-m} \phi_{k}^{J-m}(x) + \sum_{j=J-m}^{J-1} \sum_{\substack{k=0\\ |d_{k}^{j}| > \varepsilon}}^{2^{j}} d_{k}^{j} \psi_{k}^{j}(x) \underbrace{\text{ONERA}}_{\text{INMERA}} (1)$$

Aghora: A high-order DG solver

Examples for Adaptivity

Brijesh Pinto (PhD, 2013-2016)

Scalar elliptic problem (DG-P4 & DG-P8)

Time-dependent Burgers equation (DG-P8)

M. de la Llave Plata

Aghora: A high-order DG solver

ONERA

ahora.

Aghora : On-going work & main perspectives

- Aghora has been validated on a variety of configurations (RANS, DNS, LES)
- Major goal from 2016-onwards : ensure performance and robustness of the solver \rightarrow compute flow configurations inscribed in Onera's and industrial application fields.
 - Ensure parallel efficiency of linear and non-linear solvers of systems arising from the DG discretization
 - Extend the capacity of the method to work in the all-Mach number domain (purely incompressible approach (MICA), compressible flow specific all-Mach number approaches)
- A great effort is being put in the implementation of performant hp-adaptation algorithms (dynamic load balancing, accurate refinement indicator) → PhD thesis on hp-adaptation for LES of pulsating flows (SSeMID ITN)
- Extend the capacity of the solver to perform simulations with multi-physics coupling (aeroacoustics, aeroelasticity, aerothermal)

- BL2 Laminar shock/Boundary layer interaction
- BS1 Taylor-Green Vortex at Re = 1600
- AR2 RANS of the transonic turbulent flow in a 3D channel with a swept bump
- AS2 Spanwise periodic DNS/LES of transitional turbine cascades (T106C)

