BS1 test case DNS of the Taylor-Green vortex at Re=1600

A. Nigro 1 , C. De Bartolo 1 , F. Bassi 2

¹ University of Calabria - Department of Mechanical, Energy and Management Engineering; alessandra.nigro@unical.it, carmine.debartolo@unical.it ² University of Bergamo - Department of Engineering; francesco.bassi@unibg.it

HiOCFD4 Congress 2016. June 4-5, 2016, Crete Island, Greece

alessandra.nigro@unical.it

Overview Numerical results Conclusions 00 Taylor-Green vortex Initial flow field $u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$ $v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$ w = 0 $p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$ where: constant physical properties Re = 1600 $M_0 = 0.1$ $\gamma = 1.4$ Pr = 0.71

alessandra.nigro@unical.it

3S1 test case DNS of the Taylor-Green vortex at Re=1600

University of Calabria

・ロト ・日下・ ・ ヨト・

Line and a com

Initial flow field

$$\begin{split} u &= V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right) \\ v &= -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right) \\ w &= 0 \\ p &= p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right)\right) \left(\cos\left(\frac{2z}{L}\right) + 2\right) \end{split}$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

(日)

alessandra.nigro@unical.it

3S1 test case DNS of the Taylor-Green vortex at Re=1600

Initial flow field

$$\begin{split} u &= V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right) \\ v &= -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right) \\ w &= 0 \\ p &= p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right)\right) \left(\cos\left(\frac{2z}{L}\right) + 2\right) \end{split}$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- Primitive variables with $p = \ln p$ and $T = \ln T$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへ(

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

Initial flow field

$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$ $v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$ w = 0v = 0

$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- Primitive variables with $p = \ln p$ and $T = \ln T$

<ロト < 部 ト < 差 ト < 差 ト 三 の < 0</p>

alessandra.nigro@unical.it

0	0000000000000	00
Taylor-Green vortex		
Initial flow field	MIGALE code:	
$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$	Compressible NS equ Primitive variables w	lations ith $p = \ln p$ and $T = \ln T$
$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$		
w = 0		
$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2y}{L}\right) \right)$	$s\left(\frac{2z}{L}\right)+2\right)$	
where:	1	
constant physical properties		
Re = 1600		
$M_0 = 0.1$		
$\begin{array}{l} \gamma = 1.4 \\ Pr = 0.71 \end{array}$		

Numerical results

alessandra.nigro@unical.it

æ University of Calabria

Overview

イロト イヨト イヨト イヨト

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- · Periodic boundary conditions
- $T = 20t_c$
- Total DOFs \forall unknown=256³, 128³, 64³
- Uniform cartesian grid
- P1 P5 elements
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

< □ > < □ > < □ > < □ > < □ >

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- · Periodic boundary conditions
- $T = 20t_c$
- Total DOFs \forall unknown=256³, 128³, 64³
- Uniform cartesian grid
- $\bullet \ P1-P5$ elements
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

< □ > < □ > < □ > < □ > < □ >

alessandra.nigro@unical.it

3S1 test case DNS of the Taylor-Green vortex at Re=1600

·,

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- · Periodic boundary conditions
- $T = 20t_c$
- \bullet Total DOFs \forall unknown=256^3, 128^3, 64^3
- Uniform cartesian grid
- $\bullet \ P1-P5 \ {\rm elements}$
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

< □ > < □ > < □ > < □ > < □ >

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- · Periodic boundary conditions
- $T = 20t_c$
- Total DOFs \forall unknown=256³, 128³, 64³
- Uniform cartesian grid
- $\bullet \ P1-P5$ elements
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

< □ > < □ > < □ > < □ > < □ >

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- · Periodic boundary conditions
- $T = 20t_c$
- Total DOFs \forall unknown=256³, 128³, 64³
- Uniform cartesian grid
- $\bullet \ P1-P5 \ {\rm elements}$
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

< □ > < □ > < □ > < □ > < □ >

alessandra.nigro@unical.it

3S1 test case DNS of the Taylor-Green vortex at Re=1600

.

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- · Periodic boundary conditions
- $T = 20t_c$
- Total DOFs \forall unknown=256³, 128³, 64³
- Uniform cartesian grid
- $\bullet \ P1-P5 \ {\rm elements}$
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

< □ > < □ > < □ > < □ > < □ >

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

MIGALE code:

- DGFEM
- Compressible NS equations
- \bullet Primitive variables with $p=\ln p$ and $T=\ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- · Periodic boundary conditions
- $T = 20t_c$
- Total DOFs \forall unknown=256³, 128³, 64³
- Uniform cartesian grid
- P1 P5 elements
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

< □ > < □ > < □ > < □ > < □ >

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

Initial flow field

$$u = V_0 \sin\left(\frac{x}{L}\right) \cos\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$
$$v = -V_0 \cos\left(\frac{x}{L}\right) \sin\left(\frac{y}{L}\right) \cos\left(\frac{z}{L}\right)$$

$$w = 0$$

$$p = p_0 + \frac{\rho_0 V_0^2}{16} \left(\cos\left(\frac{2x}{L}\right) + \cos\left(\frac{2y}{L}\right) \right) \left(\cos\left(\frac{2z}{L}\right) + 2 \right)$$

where:

constant physical properties $\begin{aligned} Re &= 1600 \\ M_0 &= 0.1 \\ \gamma &= 1.4 \\ Pr &= 0.71 \end{aligned}$

By considering uniform cartesian grids:

256^3 dofs 64^3 dofs 128^3 dofs dofs ∀el. n. el. el.∀ dir. Ρ n. el el.∀ dir. n. el. el.∀ dir. 1 4 4.194.304161 _ 2 10 1,677,722119209.715593 20838,861 94 104,858 47 13,1072435 59.91939 7,490 204 4,68117 56

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

MIGALE code:

- DGFEM
- Compressible NS equations
- Primitive variables with $p = \ln p$ and $T = \ln T$

Discretization

- $\bullet \ x,y,z \in [-\pi,\pi]$
- Periodic boundary conditions
- $T = 20t_c$
- Total DOFs \forall unknown=256³, 128³, 64³
- Uniform cartesian grid
- P1 − P5 elements
- ROS(5,8) vs. RK(4,5) time integration schemes
- Preconditioned Roe (p-Roe) vs. Exact Riemman Solver (ERS) numerical fluxes

200

Overview	Numerical results	Conclusions
00	000000000000000000000000000000000000000	000
Analysis		

• Temporal evolution of the kinetic energy integrated on the domain:

$$E_k = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{v} \cdot \mathbf{v}}{2} d\Omega$$

・ロト・西ト・モト・ ヨー めんの

University of Calabria

alessandra.nigro@unical.it

• Temporal evolution of the kinetic energy integrated on the domain:

$$E_k = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{v} \cdot \mathbf{v}}{2} d\Omega$$

• Temporal evolution of the kinetic energy dissipation rate:

$$\epsilon = -\frac{dE_k}{dt}$$

メロト メポト メヨト メヨト

alessandra.nigro@unical.it

• Temporal evolution of the kinetic energy integrated on the domain:

$$E_k = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{v} \cdot \mathbf{v}}{2} d\Omega$$

• Temporal evolution of the kinetic energy dissipation rate:

$$\epsilon = -\frac{dE_k}{dt}$$

 \bullet Temporal evolution of the dissipation rate ϵ based on the enstrophy ε integrated on the domain:

$$\epsilon = 2 \frac{\mu}{\rho_0} \varepsilon$$

where

$$\varepsilon = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{w} \cdot \mathbf{w}}{2} d\Omega$$

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

University of Calabria

メロト メポト メヨト メヨト

• Temporal evolution of the kinetic energy integrated on the domain:

$$E_k = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{v} \cdot \mathbf{v}}{2} d\Omega$$

• Temporal evolution of the kinetic energy dissipation rate:

$$\epsilon = -\frac{dE_k}{dt}$$

• Temporal evolution of the dissipation rate ϵ based on the enstrophy ε integrated on the domain:

$$\epsilon = 2 \frac{\mu}{\rho_0} \epsilon$$

where

$$\varepsilon = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{w} \cdot \mathbf{w}}{2} d\Omega$$

• Temporal evolution of the theoretical error defined as:

Theoretical error =
$$\left| \frac{dE_k}{dt} + \epsilon \right|$$

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

University of Calabria

• Temporal evolution of the kinetic energy integrated on the domain:

$$E_k = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{v} \cdot \mathbf{v}}{2} d\Omega$$

• Temporal evolution of the kinetic energy dissipation rate:

$$\epsilon = -\frac{dE_k}{dt}$$

• Temporal evolution of the dissipation rate ϵ based on the enstrophy ε integrated on the domain:

$$\epsilon = 2 \frac{\mu}{\rho_0} \varepsilon$$

where

$$\varepsilon = \frac{1}{\rho_0 \Omega} \int_{\Omega} \rho \frac{\mathbf{w} \cdot \mathbf{w}}{2} d\Omega$$

• Temporal evolution of the theoretical error defined as:

Theoretical error =
$$\left| \frac{dE_k}{dt} + \epsilon \right|$$

Analysis:

- Evolution of the outputs as a function of the time compared with the results of a pseudo-spectral code
- Evolution of the outputs errors with respect to the results of a pseudo-spectral code as a function of the time

< LI

• Maximum outputs errors vs. W.U.

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

Overview	Numerical results	Conclusions
00	0000000000000	000
Analysis		

Outputs Errors:

• Temporal evolution of the kinetic energy errors with respect to the results of a pseudo-spectral code:

$$\Delta E_k = |E_k - E_k^*|_{t \in [0, 20t_c]}$$

$$\Delta E_k \% = \left| \frac{E_k - E_k^*}{E_k^*} \right|_{t \in [0, 20t_c]} \times 100$$

 Temporal evolution of the kinetic energy dissipation rate errors with respect to the results of a pseudo-spectral code:

$$\begin{split} \Delta \frac{dE_k}{dt} &= \left| -\frac{dE_k}{dt} + \left(\frac{dE_k}{dt} \right)^* \right|_{t \in [0, 20t_c]} \\ \Delta \frac{dE_k}{dt} \% &= \left| \frac{-\frac{dE_k}{dt} + \left(\frac{dE_k}{dt} \right)^*}{\left(\frac{dE_k}{dt} \right)^*} \right|_{t \in [0, 20t_c]} \times 100 \end{split}$$

• Temporal evolution of the dissipation rate ϵ errors with respect to the results of a pseudo-spectral code:

$$\Delta \epsilon = |\epsilon - \epsilon^*|_{t \in [0, 20t_c]}$$
$$\Delta \epsilon \% = \left| \frac{\epsilon - \epsilon^*}{\epsilon^*} \right|_{t \in [0, 20t_c]} \times 100$$

Analysis:

- Evolution of the outputs as a function of the time compared with the results of a pseudo-spectral code
- Evolution of the outputs errors with respect to the results of a pseudo-spectral code as a function of the time
- Maximum outputs errors vs. W.U.

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

イロト 不得 トイヨト イヨト

Overview ○●	Numerical results	Conclusions
Analysis		

Maximum Outputs Errors:

• Maximum kinetic energy errors with respect to the results of a pseudo-spectral code:

 $\operatorname{err} (E_k) = [\max (\Delta E_k)]_{t \in [0, 10t_c]}$ $\operatorname{err} (E_k) \% = [\max (\Delta E_k \%)]_{t \in [0, 10t_c]}$

• Maximum kinetic energy dissipation rate errors with respect to the results of a pseudo-spectral code:

$$\begin{split} & \operatorname{err}\left(\frac{dE_k}{dt}\right) = \left[\max\left(\Delta\frac{dE_k}{dt}\right)\right]_{t\in[0,10t_c]} \\ & \operatorname{err}\left(\frac{dE_k}{dt}\right)\% = \left[\max\left(\Delta\frac{dE_k}{dt}\%\right)\right]_{t\in[0,10t_c]} \end{split}$$

• Maximum dissipation rate ϵ errors with respect to the results of a pseudo-spectral code:

$$\operatorname{err} (\epsilon) = [\max (\Delta \epsilon)]_{t \in [0, 10t_c]}$$
$$\operatorname{err} (\epsilon) \% = [\max (\Delta \epsilon \%)]_{t \in [0, 10t_c]}$$

Analysis:

- . Evolution of the outputs as a function of the time compared with the results of a pseudo-spectral code
- Evolution of the outputs errors with respect to the results of a pseudo-spectral code as a function of the time
- Maximum outputs errors vs. W.U.

alessandra.nigro@unical.it

3S1 test case DNS of the Tavlor-Green vortex at Re=1600

University of Calabria

Image: A match a ma

Overview ○●	Numerical results	Conclusions
Analysis		

Maximum Outputs Errors:

• Maximum kinetic energy errors with respect to the results of a pseudo-spectral code:

 $\operatorname{err} (E_k) = [\max (\Delta E_k)]_{t \in [0, 10t_c]}$ $\operatorname{err} (E_k) \% = [\max (\Delta E_k \%)]_{t \in [0, 10t_c]}$

• Maximum kinetic energy dissipation rate errors with respect to the results of a pseudo-spectral code:

$$\begin{split} & \exp\left(\frac{dE_k}{dt}\right) = \left[\max\left(\Delta\frac{dE_k}{dt}\right)\right]_{t\in[0,10t_c]} \\ & \exp\left(\frac{dE_k}{dt}\right)\% = \left[\max\left(\Delta\frac{dE_k}{dt}\%\right)\right]_{t\in[0,10t_c]} \end{split}$$

• Maximum dissipation rate ϵ errors with respect to the results of a pseudo-spectral code:

$$\operatorname{err} (\epsilon) = [\max (\Delta \epsilon)]_{t \in [0, 10t_c]}$$
$$\operatorname{err} (\epsilon) \% = [\max (\Delta \epsilon \%)]_{t \in [0, 10t_c]}$$

Computational resources employed:

- In-house resources at the High Performance Computing Center (HPCC) of University of Calabria: 10 computing nodes with 20 cores each (Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz)
- ${\rm \bullet}\,$ Simulation are performed on 40-200 cores

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

University of Calabria

Image: A match a ma

Overview ○●	Numerical results	Conclusions
Analysis		

Maximum Outputs Errors:

• Maximum kinetic energy errors with respect to the results of a pseudo-spectral code:

 $\operatorname{err} (E_k) = [\max (\Delta E_k)]_{t \in [0, 10t_c]}$ $\operatorname{err} (E_k) \% = [\max (\Delta E_k \%)]_{t \in [0, 10t_c]}$

• Maximum kinetic energy dissipation rate errors with respect to the results of a pseudo-spectral code:

$$\begin{split} & \exp\left(\frac{dE_k}{dt}\right) = \left[\max\left(\Delta\frac{dE_k}{dt}\right)\right]_{t\in[0,10t_c]} \\ & \exp\left(\frac{dE_k}{dt}\right)\% = \left[\max\left(\Delta\frac{dE_k}{dt}\%\right)\right]_{t\in[0,10t_c]} \end{split}$$

• Maximum dissipation rate ϵ errors with respect to the results of a pseudo-spectral code:

$$\operatorname{err} (\epsilon) = [\max (\Delta \epsilon)]_{t \in [0, 10t_c]}$$
$$\operatorname{err} (\epsilon) \% = [\max (\Delta \epsilon \%)]_{t \in [0, 10t_c]}$$

Computational resources employed:

- In-house resources at the High Performance Computing Center (HPCC) of University of Calabria: 10 computing nodes with 20 cores each (Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz)
- $\bullet\,$ Simulation are performed on 40-200 cores

BS1 test case DNS of the Taylor-Green vortex at Re=1600

University of Calabria

Image: A match a ma

Explicit Runge Kutta(4,5) & ERS numerical flux

			256^{3} d	ofs		128^{3} d	ofs	64^3 dofs			
Ρ	cfl	grid	$T/\Delta t_{av}$	W.U.	grid	$T/\Delta t_{av}$	W.U.	grid	$T/\Delta t_{av}$	W.U.	
1	0.35	161	16,443	$3.196 \cdot 10^{6}$	-	-	_	_	-	_	
2	0.2	119	21,149	$6.954\cdot 10^6$	59	10,310	$3.892\cdot 10^5$	_	_	_	
3	0.15	94	22,099	$1.515 \cdot 10^{7}$	47	10,907	$9.100 \cdot 10^{5}$	24	5,443	$6.374 \cdot 10^{4}$	
4	0.1	_	_	_	39	13,527	$2.745\cdot 10^6$	20	6,770	$1.874 \cdot 10^{5}$	
5	0.1	_	-	-	-	-	-	17	5,783	$3.856\cdot 10^5$	

Variable Δt with cfl = 1/(2P+1)

Tau Bench =7.208 s

University of Calabria

Image: A math a math

alessandra.nigro@unical.it

$128^3 \; \mathrm{DOFs}$

alessandra.nigro@unical.it

University of Calabria

(日)

$128^3 \; \mathrm{DOFs}$

alessandra.nigro@unical.it

University of Calabria

$128^3 \; \mathrm{DOFs}$

alessandra.nigro@unical.it

University of Calabria

$128^3 \; \mathrm{DOFs}$

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

University of Calabria

・ロト ・ 日 ト ・ ヨ ト ・

max errors RK(4,5) & ERS numerical flux:

$$\begin{split} &\mathsf{err}(a) = \max\Bigl(|a - a^*|_{t \in [0, 10t_c]}\Bigr) \\ &\mathsf{err}(a) \,\% = \max\Bigl([|a - a^*/a^*|]_{t \in [0, 10t_c]}\Bigr) \times 100 \end{split}$$

256^3 DOFs

Ρ	grid	$err(E_k)$	$\operatorname{err}(E_k)$ %	$\operatorname{err}(dE_k/dt)$	$\operatorname{err}(dE_k/dt)$ %	$err(\epsilon)$	$\operatorname{err}(\epsilon)\%$	Theor. err.
1	161	$5.099 \cdot 10^{-3}$	5.61	$1.587 \cdot 10^{-3}$	34.22	$6.667 \cdot 10^{-3}$	51.97	$5.836 \cdot 10^{-3}$
2	119	$3.232 \cdot 10^{-4}$	0.36	$4.153\cdot10^{-4}$	6.74	$2.196 \cdot 10^{-3}$	17.22	$1.995 \cdot 10^{-3}$
3	94	$1.122\cdot 10^{-4}$	0.13	$2.618\cdot10^{-4}$	6.74	$1.098\cdot 10^{-3}$	8.73	$9.781\cdot 10^{-4}$

128^3 DOFs

Ρ	grid	$err(E_k)$	$\operatorname{err}(E_k)\%$	$\operatorname{err}(dE_k/dt)$	$\operatorname{err}(dE_k/dt)$ %	$err(\epsilon)$	$err(\epsilon)\%$	Theor. err.
2	59	$2.692 \cdot 10^{-3}$	2.92	$1.833 \cdot 10^{-3}$	15.47	$5.844 \cdot 10^{-3}$	45.54	$4.566 \cdot 10^{-3}$
3	47	$9.161 \cdot 10^{-4}$	0.99	$1.020 \cdot 10^{-3}$	7.99	$4.140 \cdot 10^{-3}$	32.25	$3.404 \cdot 10^{-3}$
4	39	$6.777\cdot 10^{-4}$	0.75	$8.659\cdot 10^{-4}$	7.02	$3.345\cdot10^{-3}$	26.19	$2.885\cdot10^{-3}$

64^3 DOFs

Ρ	grid	$err(E_k)$	$\operatorname{err}(E_k)\%$	$\operatorname{err}(dE_k/dt)$	$\operatorname{err}(dE_k/dt)$ %	$err(\epsilon)$	$\operatorname{err}(\epsilon)\%$	Theor. err.
3	24	$6.847 \cdot 10^{-3}$	7.45	$2.436 \cdot 10^{-3}$	36.58	$7.280 \cdot 10^{-3}$	56.82	$7.318 \cdot 10^{-3}$
4	20	$4.240\cdot10^{-3}$	4.92	$2.266 \cdot 10^{-3}$	21.19	$6.374 \cdot 10^{-3}$	49.68	$6.893 \cdot 10^{-3}$
5	17	$3.694 \cdot 10^{-3}$	4.07	$2.231 \cdot 10^{-3}$	21.73	$6.254 \cdot 10^{-3}$	48.72	$5.634 \cdot 10^{-3}$

alessandra.nigro@unical.it

University of Calabria

Numerical results

Conclusions

Polynomial degree

error(ϵ)/W.U. RK(4,5) & ERS numerical flux:

alessandra.nigro@unical.it

Numerical results

Conclusions

Polynomial degree

error(ϵ)/W.U. RK(4,5) & ERS numerical flux:

alessandra.nigro@unical.it

Implicit Rosenbrock(5,8) vs. Explicit Runge Kutta(4,5) ROS(5,8)

			25	6 ³ dofs		128 ³ dofs						64 ³ dofs				
Ρ	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	
1	161	0.12	167	1.174	272	-	-	-	-	-	-	-	-	-	_	
2	119	0.1	200	2.934	608	59	0.17	119	2.476	76	-	-	-	-	-	
3	94	0.1	200	2.057	1,140	47	0.12	167	2.447	144	24	0.17	119	1.890	23	
4	-	-	-	-	-	39	0.12	167	3.222	248	20	0.17	119	2.372	36	
5	-	-	-	-	-	-	-	-	-	-	17	0.17	119	2.292	56	

University of Calabria

alessandra.nigro@unical.it

Implicit Rosenbrock(5,8) vs. Explicit Runge Kutta(4,5) ROS(5,8)

			25	6 ³ dofs		128 ³ dofs						64 ³ dofs				
Ρ	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	
1	161	0.12	167	1.174	272	-	-	-	-	-	-	-	-	-	-	
2	119	0.1	200	2.934	608	59	0.17	119	2.476	76	-	-	-	-	-	
3	94	0.1	200	2.057	1,140	47	0.12	167	2.447	144	24	0.17	119	1.890	23	
4	-	-	-	-	-	39	0.12	167	3.222	248	20	0.17	119	2.372	36	
5	-	-	-	-	-	-	-	-	-	-	17	0.17	119	2.292	56	

RK(4,5)

				256^3 dofs				128^3 dofs				64^3 dofs	
Ρ	cfl	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)
1	0.35	161	16,443	$3.196 \cdot 10^{6}$	28	-	-	-	-	-	-	-	-
2	0.2	119	21, 149	$6.954 \cdot 10^{6}$	88	59	10,310	$3.892 \cdot 10^{5}$	12	-	-	-	-
3	0.15	94	22,099	$1.515 \cdot 10^{7}$	131	47	10,907	$9.100 \cdot 10^{5}$	18	24	5,443	$6.374 \cdot 10^{4}$	5
4	0.1	-	-	-	-	39	13, 527	$2.745 \cdot 10^{6}$	27	20	6,770	$1.874 \cdot 10^{5}$	6
5	0.1	-	-	-	-	-	-	-	-	17	5,783	$3.856 \cdot 10^{5}$	8

(日)

alessandra.nigro@unical.it

Implicit Rosenbrock(5,8) vs. Explicit Runge Kutta(4,5) ROS(5,8)

			25	6 ³ dofs				12	8^3 dofs				64	³ dofs	
Ρ	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)
1	161	0.12	167	1.174	272	-	-	-	-	-	-	-	-	-	-
2	119	0.1	200	2.934	608	59	0.17	119	2.476	76	-	-	-	-	-
3	94	0.1	200	2.057	1,140	47	0.12	167	2.447	144	24	0.17	119	1.890	23
4	-	_	-	-	-	39	0.12	167	3.222	248	20	0.17	119	2.372	36
5	-	-	-	-	-	-	-	-	-	-	17	0.17	119	2.292	56

RK(4,5)

				256^3 dofs				128^3 dofs				64^3 dofs	
Ρ	cfl	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)
1	0.35	161	16,443	$3.196 \cdot 10^{6}$	28	-	-	-	-	-	-	-	-
2	0.2	119	21, 149	$6.954 \cdot 10^{6}$	88	59	10,310	$3.892 \cdot 10^{5}$	12	-	-	-	-
3	0.15	94	22,099	$1.515 \cdot 10^{7}$	131	47	10,907	$9.100 \cdot 10^{5}$	18	24	5,443	$6.374 \cdot 10^{4}$	5
4	0.1	-	-	-	-	39	13,527	$2.745 \cdot 10^{6}$	27	20	6,770	$1.874 \cdot 10^{5}$	6
5	0.1	-	-	-	-	-	-	-	-	17	5,783	$3.856\cdot 10^5$	8

- W.U. $_{ratio} = W.U._{RK(4,5)} / W.U._{ROS(5,8)} = 2 3$
- $RAM_{ratio} = RAM_{ROS(5,8)} / RAM_{RK(4,5)} = 6 10$

alessandra.nigro@unical.it

Implicit Rosenbrock(5,8) vs. Explicit Runge Kutta(4,5) ROS(5,8)

			25	6 ³ dofs				12	8^3 dofs				64	³ dofs	
Ρ	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)
1	161	0.12	167	1.174	272	-	-	-	-	-	-	-	-	-	-
2	119	0.1	200	2.934	608	59	0.17	119	2.476	76	-	-	-	-	-
3	94	0.1	200	2.057	1,140	47	0.12	167	2.447	144	24	0.17	119	1.890	23
4	-	_	-	-	-	39	0.12	167	3.222	248	20	0.17	119	2.372	36
5	-	-	-	-	-	-	-	-	-	-	17	0.17	119	2.292	56

RK(4,5)

				256^3 dofs				128^3 dofs				64^3 dofs	
Ρ	cfl	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)
1	0.35	161	16,443	$3.196 \cdot 10^{6}$	28	-	-	-	-	-	-	-	-
2	0.2	119	21, 149	$6.954 \cdot 10^{6}$	88	59	10,310	$3.892 \cdot 10^{5}$	12	-	-	-	-
3	0.15	94	22,099	$1.515 \cdot 10^{7}$	131	47	10,907	$9.100 \cdot 10^{5}$	18	24	5,443	$6.374 \cdot 10^{4}$	5
4	0.1	-	-	-	-	39	13,527	$2.745 \cdot 10^{6}$	27	20	6,770	$1.874 \cdot 10^{5}$	6
5	0.1	-	-	-	-	-	-	-	-	17	5,783	$3.856\cdot 10^5$	8

- W.U. $_{ratio} =$ W.U. $_{RK(4,5)}$ /W.U. $_{ROS(5,8)} = 2 3$
- $RAM_{ratio} = RAM_{ROS(5,8)} / RAM_{RK(4,5)} = 6 10$

alessandra.nigro@unical.it

University of Calabria

Implicit Rosenbrock(5,8) vs. Explicit Runge Kutta(4,5) ROS(5,8)

			25	6 ³ dofs				12	8 ³ dofs				64	³ dofs	
Ρ	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)	grid	f	$T/\Delta t$	W.U.ratio	RAM (GB)
1	161	0.12	167	1.174	272	-	-	-	-	-	-	-	-	-	-
2	119	0.1	200	2.934	608	59	0.17	119	2.476	76	-	-	-	-	-
3	94	0.1	200	2.057	1,140	47	0.12	167	2.447	144	24	0.17	119	1.890	23
4	-	-	-	-	-	39	0.12	167	3.222	248	20	0.17	119	2.372	36
5	-	-	-	-	-	-	-	-	-	-	17	0.17	119	2.292	56

RK(4,5)

				256^3 dofs				128^3 dofs				64^3 dofs	
Ρ	cfl	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)	grid	$T/\Delta t_{av}$	W.U.	RAM (GB)
1	0.35	161	16,443	$3.196 \cdot 10^{6}$	28	-	-	-	-	-	-	-	-
2	0.2	119	21, 149	$6.954 \cdot 10^{6}$	88	59	10,310	$3.892 \cdot 10^{5}$	12	-	-	-	-
3	0.15	94	22,099	$1.515 \cdot 10^{7}$	131	47	10,907	$9.100 \cdot 10^{5}$	18	24	5,443	$6.374 \cdot 10^{4}$	5
4	0.1	-	-	-	-	39	13,527	$2.745 \cdot 10^{6}$	27	20	6,770	$1.874 \cdot 10^{5}$	6
5	0.1	-	-	-	-	-	-	-	-	17	5,783	$3.856\cdot 10^5$	8

- W.U. $_{ratio}$ =W.U. $_{RK(4,5)}$ /W.U. $_{ROS(5,8)}$ = 2 3
- $\mathsf{RAM}_{ratio} = \mathsf{RAM}_{ROS(5,8)} / \mathsf{RAM}_{RK(4,5)} = 6 10$

alessandra.nigro@unical.it

University of Calabria

128^3 DOFs

alessandra.nigro@unical.it

University of Calabria

128^3 DOFs

alessandra.nigro@unical.it

University of Calabria

128^3 DOFs

Zoom ϵ :

alessandra.nigro@unical.it

University of Calabria

128^3 DOFs

alessandra.nigro@unical.it

University of Calabria

error(ϵ)/W.U. ROS(5,8) vs. RK(4,5):

University of Calabria

alessandra.nigro@unical.it

Numerical results

Implicit vs. Explicit

$error(\epsilon)/W.U. ROS(5,8) vs. RK(4,5):$

University of Calabria

alessandra.nigro@unical.it

Preconditioned Roe vs ERS

Implicit Rosenbrock(5,8): Preconditioned Roe vs. ERS

ROS(5,8) ERS:

		256^{3}	dofs		128^{3}	dofs		64^{3} (dofs
Ρ	grid	$T/\Delta t$	W.U.	grid	$T/\Delta t$	W.U.	grid	$T/\Delta t$	W.U.
1	161	167	$2.723 \cdot 10^{6}$	-	-	_	-	-	-
2	119	200	$2.370 \cdot 10^{6}$	59	119	$1.572 \cdot 10^{5}$	-	-	-
3	94	200	$7.365 \cdot 10^{6}$	47	167	$3.719 \cdot 10^{5}$	24	119	$3.372 \cdot 10^{4}$
4	-	_	-	39	167	$8.522 \cdot 10^{5}$	20	119	$7.901 \cdot 10^{4}$
5	-	-	-	-	-	-	17	119	$1.683\cdot 10^5$

ROS(5,8) Preconditioned Roe:

		-256^{3} c	lofs		128^{3} c	lofs		64 ³ d	ofs
Ρ	grid	$T/\Delta t$	W.U.ratio	grid	$T/\Delta t$	W.U.ratio	grid	$T/\Delta t$	W.U.ratio
1	161	250	1.112	-	-	-	-	-	-
2	119	250	1.205	59	167	1.337	-	-	-
3	94	334	1.588	47	200	1.261	24	119	1.077
4	-	-	-	39	200	1.263	20	119	1.057
5	-	-	-	-	-	-	17	119	1.064

$$W.U._{ratio} = W.U._{p-Roe}/W.U._{ERS}$$

alessandra.nigro@unical.it

Preconditioned Roe vs ERS

Implicit Rosenbrock(5,8): Preconditioned Roe vs. ERS

ROS(5,8) ERS:

		256^{3}	dofs		128^{3}	dofs		64^{3} (dofs
Ρ	grid	$T/\Delta t$	W.U.	grid	$T/\Delta t$	W.U.	grid	$T/\Delta t$	W.U.
1	161	167	$2.723 \cdot 10^{6}$	-	-	_	-	-	-
2	119	200	$2.370 \cdot 10^{6}$	59	119	$1.572 \cdot 10^{5}$	-	-	-
3	94	200	$7.365 \cdot 10^{6}$	47	167	$3.719 \cdot 10^{5}$	24	119	$3.372 \cdot 10^{4}$
4	-	_	-	39	167	$8.522 \cdot 10^{5}$	20	119	$7.901 \cdot 10^{4}$
5	-	-	-	-	-	-	17	119	$1.683\cdot 10^5$

ROS(5,8) Preconditioned Roe:

		$\begin{array}{c c} 256^3 \text{ dofs} \\ \hline \text{grid} & T/\Delta t & \text{W.U.}_{rati} \\ \hline 161 & 250 & 1.112 \\ 119 & 250 & 1.205 \\ 94 & 334 & 1.588 \\ \hline & & & & & \\ \hline \end{array}$			128^{3} c	lofs		64 ³ d	ofs
P	grid	$T/\Delta t$	W.U.ratio	grid	$T/\Delta t$	W.U.ratio	grid	$T/\Delta t$	W.U.ratio
1	161	250	1.112	-	-	-	-	-	-
2	119	250	1.205	59	167	1.337	-	-	-
- 3	94	334	1.588	47	200	1.261	24	119	1.077
4	-	_	_	39	200	1.263	20	119	1.057
5	-	-	-	-	-	-	17	119	1.064

$$W.U._{ratio} = W.U._{p-Roe}/W.U._{ERS}$$

alessandra.nigro@unical.it

256^3 DOFs *P*1

University of Calabria

20

alessandra.nigro@unical.it

256^3 DOFs P2

alessandra.nigro@unical.it

University of Calabria

20

256^3 DOFs P3

alessandra.nigro@unical.it

University of Calabria

256³ DOFs P1: vorticity norm at $x = -\pi L$ at time $t/t_c = 8$

ERS:

・ロト ・ 日 ト ・ ヨ ト ・

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

256³ DOFs P2: vorticity norm at $x = -\pi L$ at time $t/t_c = 8$

ERS:

・ロト ・日下・ ・ ヨト・

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

256³ DOFs P3: vorticity norm at $x = -\pi L$ at time $t/t_c = 8$

ERS:

・ロト ・日下・ ・日下

alessandra.nigro@unical.it

S1 test case DNS of the Taylor-Green vortex at Re=1600

Preconditioned Roe vs ERS

max errors Preconditioned Roe:

$$\begin{split} & \mathsf{err}(a) = \mathsf{max}\Big(|a - a^*|_{t \in [0, 10t_c]}\Big) \\ & \mathsf{err}(a) \,\% = \mathsf{max}\Big([|a - a^*| \, / a^*]_{t \in [0, 10t_c]}\Big) \times 100 \end{split}$$

256^3 DOFs

Ρ	grid	$err(E_k)$	$\operatorname{err}(E_k)\%$	$\operatorname{err}(dE_k/dt)$	$\operatorname{err}(dE_k/dt)$ %	$err(\epsilon)$	$\operatorname{err}(\epsilon)\%$	Theor. err.
1	161	$1.670 \cdot 10^{-3}$	1.83	$5.482 \cdot 10^{-4}$	8.60	$3.367 \cdot 10^{-3}$	26.23	$2.929 \cdot 10^{-3}$
2	119	$1.044 \cdot 10^{-4}$	0.12	$1.964 \cdot 10^{-4}$	8.11	$1.185 \cdot 10^{-3}$	9.35	$1.047 \cdot 10^{-3}$
3	94	$1.176\cdot 10^{-4}$	0.14	$1.259\cdot 10^{-4}$	7.00	$6.807\cdot10^{-4}$	5.48	$6.381\cdot 10^{-4}$

128^3 DOFs

Ρ	grid	$err(E_k)$	$\operatorname{err}(E_k)\%$	$\operatorname{err}(dE_k/dt)$	$\operatorname{err}(dE_k/dt)$ %	$err(\epsilon)$	$\operatorname{err}(\epsilon)\%$	Theor. err.
2	59	$1.196 \cdot 10^{-3}$	1.30	$8.351 \cdot 10^{-4}$	7.54	$4.128 \cdot 10^{-3}$	32.29	$3.359 \cdot 10^{-3}$
3	47	$6.205 \cdot 10^{-4}$	0.70	$4.623\cdot 10^{-4}$	6.81	$2.999 \cdot 10^{-3}$	23.49	$2.735 \cdot 10^{-3}$
4	39	$4.820\cdot10^{-4}$	0.56	$1.873\cdot 10^{-4}$	7.65	$2.301\cdot10^{-3}$	18.02	$2.261 \cdot 10^{-3}$

$64^3 \; \mathrm{DOFs}$

alessandra.nigro@unical.it

Ρ	grid	$err(E_k)$	$\operatorname{err}(E_k)\%$	$\operatorname{err}(dE_k/dt)$	$\operatorname{err}(dE_k/dt)$ %	$err(\epsilon)$	$err(\epsilon)\%$	Theor. err.
3	24	$5.939 \cdot 10^{-3}$	7.29	$2.042 \cdot 10^{-3}$	24.19	$6.064 \cdot 10^{-3}$	47.53	$6.125 \cdot 10^{-3}$
4	20	$3.739 \cdot 10^{-3}$	4.90	$1.781 \cdot 10^{-3}$	17.46	$5.283 \cdot 10^{-3}$	41.10	$5.138\cdot10^{-3}$
5	17	$3.633\cdot10^{-3}$	3.63	$1.506\cdot10^{-3}$	13.98	$5.140\cdot10^{-3}$	40.35	$4.821\cdot10^{-3}$

University of Calabria

Numerical results

Conclusions

Preconditioned Roe vs ERS

$error(\epsilon)/W.U. ROS(5,8)$: ERS vs. Preconditioned Roe

University of Calabria

alessandra.nigro@unical.it

Numerical results

Conclusions

Preconditioned Roe vs ERS

$error(\epsilon)/W.U. ROS(5,8)$: ERS vs. Preconditioned Roe

alessandra.nigro@unical.it

• Superior performance of higher order accurate space elements

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = つへの

alessandra.nigro@unical.it

BS1 test case DNS of the Taylor-Green vortex at Re=1600

- Superior performance of higher order accurate space elements
- Superior performance of ROS(5,8) with respect to RK(4,5)

Image: A matrix and a matrix

alessandra.nigro@unical.it

- Superior performance of higher order accurate space elements
- Superior performance of ROS(5,8) with respect to RK(4,5)
- Superior performance of p-Roe with respect to ERS

Image: A matrix and a matrix

alessandra.nigro@unical.it

- Superior performance of higher order accurate space elements
- Superior performance of ROS(5,8) with respect to RK(4,5)
- Superior performance of p-Roe with respect to ERS

Work in progress

 $\bullet\,$ Performance of the above algorithms for higher Re number

- Superior performance of higher order accurate space elements
- Superior performance of ROS(5,8) with respect to RK(4,5)
- Superior performance of p-Roe with respect to ERS

Work in progress

- $\bullet\,$ Performance of the above algorithms for higher Re number
- Performance of a MF-MEBDF-DG scheme

< □ > < 同 > < 三</p>

Overview
References

Biblio:

- F. Bassi, L. Botti, A. Colombo, A. Ghidoni and F. Massa. Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows. Computer & Fluids, Vol. 118, pp. 305–320, (2015)
- F. Bassi , C. De Bartolo , R. Hartmann and A. Nigro. A discontinuous Galerkin method for inviscid low Mach number flows. Journal of Computational Physics, 228(11), pp. 3996–4011, (2009)
- A. Nigro, S. Renda, C. De Bartolo, R. Hartmann and F. Bassi. A high-order accurate discontinuous Galerkin finite element method for laminar low Mach number flows. International Journal for Numerical Methods in Fluids, 72(1), pp.43–68, (2013)

Overview	Numerical results	Conclusions
		000
That's all		

Shank you

্ট্ট ব্টু চ্ব্য University of Calabria

・ロト ・ 日 ト ・ ヨ ト ・

alessandra.nigro@unical.it