Case BL2: Shock Wave / Laminar Boundary Layer Interaction

Raphaël Blanchard & Florent Renac

ONERA - CFD Department

4th International Workshop on High-Order CFD Methods June 3-4 Crete Island, Greece

Test-case description

Incident oblique shock wave impinging a laminar boundary layer

• Objectives:

- Test shock capturing capabilities of high-order methods
- Test ability to converge to steady state
- Outputs: drag, separation / reattachment points, recirculation zone, wall data (pressure, skin friction)

[Degrez et al., J. Fluid Mech., 177 (1987)]

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Test-case description

Incident oblique shock wave impinging a laminar boundary layer

• Flow conditions:

- Angle between shock and plate: $\sigma = 30.8^{\circ}$
- 2D steady laminar supersonic flow ($M_0 = 2.15$)
- Navier-Stokes eq.
- Reynolds number (freestream quantities, abscissa of impingement of the inviscid shock with the plate):

$$Re = \frac{\rho_0 V_0 x_{sh}}{\mu(T_0)} = 10^5$$

• Boundary conditions:

- walls: no-slip adiabatic condition
- supersonic inlet and outlet conditions
- inlet conditions satisfy Rankine-Hugoniot relations through the shock
- top: non-reflecting condition
- Closure laws:
 - ideal gas law with $\gamma = 1.4$
 - Sutherland's law
 - Fourrier's law with Pr = 0.72

イロト 不得下 イヨト イヨト

Geometry of the domain and provided meshes

Series of 5 Cartesian meshes (from 2, 250 to 59, 262 quads)

• • • • • • • • • •

Participants

- University of Bergamo:
 - primitive variables with log(p) and log(T)
 - DG orthogonal modal basis (polynomial degree $1 \le p \le 6$)
 - inviscid fluxes: Godunov method
 - viscous fluxes: BR2 method
 - no shock-capturing
 - backward-Euler time integration (GMRES linear solver, ILU0 and Additive Schwarz)
 - pseudo-transient continuation strategy
 - runs performed on 1 to 16 cores (TauBench \simeq 10.4)
- Onera:
 - conservative variables
 - ▶ DG orthogonal modal basis (polynomial degree $1 \le p \le 4$)
 - inviscid fluxes: local Lax-Friedrichs flux
 - viscous fluxes: BR2 method
 - no shock-capturing
 - backward-Euler time integration (rGMRES linear solver, ILU0)
 - pseudo-transient continuation strategy
 - runs performed on 4 to 36 cores (TauBench \simeq 7.4)

イロト イポト イヨト イヨト

Convergence histories (residuals vs. iterations) Univ. Bergamo (top) and Onera (bottom)

R. Blanchard & F. Renac (ONERA)

BL2. SWLBLI

< A

Convergence histories (residuals vs. work units) Univ. Bergamo (top) and Onera (bottom)

< 47 > < 3

Restarting computations (Univ. Bergamo) From: p - 1 solution (top) / uniform solution (bottom)

R. Blanchard & F. Renac (ONERA)

BL2. SWLBLI

June 3-4, 2016 8 / 15

▲ 同 → - ▲ 三

Pressure distributions at wall

Univ. Bergamo (top) and Onera (bottom)

R. Blanchard & F. Renac (ONERA)

BL2. SWLBLI

・ロト ・ 日 ・ ・ ヨ ・ ・

Skin friction coefficient at wall

Univ. Bergamo (top) and Onera (bottom)

・ロト ・回ト ・ヨト

Pressure distributions at y = 0.1Univ. Bergamo (top) and Onera (bottom)

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Drag

R. Blanchard & F. Renac (ONERA)

BL2. SWLBLI

2

Separation point

R. Blanchard & F. Renac (ONERA)

BL2. SWLBLI

June 3-4, 2016 13 / 15

2

Reattachment point

R. Blanchard & F. Renac (ONERA)

BL2. SWLBLI

June 3-4, 2016 14 / 15

æ

Conclusion

- Restarting from p-1 solution increases efficiency of the computations
- Comparable methods and results (except drag evaluation: Onera results altered by spurious oscillations at exit)
- Damping spurious oscillations across shock waves is important to restore flow physics
- Possible evolution of the test-case to 3D unsteady flow physics

< ロト < 同ト < ヨト < ヨ