Computation the bow shock at M=4 with a 5th -order WENO scheme

John A. Ekaterinaris

Embry-Riddle Aeronautical University Daytona Beach FL

Spatial discretization: WENO-5

 Weighted average of interpolated values from all candidate stencils

Shu, 2000, NASA/CR-97-206253 Henric et. al. 2005, *JCP* Bogers et. al. 2008, *JCP*

WENO-5

Implicit time integration

▶ Semi-discretized form

$$
\frac{\partial Q}{\partial t} = R(Q)
$$

- \triangleright Implicit time integration
	- **Significantly relaxed stability constraints**
	- Large time steps (limited by physical considerations), reduce the required CPU time
	- Main difficulty solution of the resulting nonlinear system of equations

Implicit time integration - 1

 \triangleright Implicit1st order backward Euler

$$
\frac{Q^{n+1} - Q^n}{\Delta t} = R(Q^{n+1})
$$

Nonlinear implicit equations

$$
F(Q^{n+1}) = \frac{1}{\Delta t} Q^{n+1} - R(Q^{n+1}) - \frac{Q^n}{\Delta t} = 0
$$

Implicit time integration - 2

S-stage, implicit Runge-Kutta schemes

$$
Y_{i} = Q^{n} + \Delta t \sum_{j=1}^{i} a_{ij} R(t_{n} + c_{j} \Delta t, Y_{j}) \qquad i = 1, 2, ..., s
$$

$$
Q^{n+1} = Q^n + \Delta t \sum_{i=1}^{S} b_i R(t_n + c_i \Delta t, Y_i)
$$

i-stage and stage and stage

$$
F(Y_i) = \frac{1}{\Delta t} Y_i - a_{ii} R(t_n + c_i \Delta t, Y_i) - \left[\frac{Q^n}{\Delta t} + \sum_{j=1}^{i-1} a_{ij} R(t_n + c_j \Delta t, Y_j) \right]
$$

= 0

Solution of implicit equations

- General equations $F(Y_i) = \alpha Y_i + \beta R(Y_i) - b = 0$
- \triangleright Newton iteration $Y^{k+1} = Y^k + \delta Y^k$

$$
\frac{\partial F}{\partial Y} \delta Y^k = F(Y_i^k)
$$

Convergence test

$$
||F(Y_i^{k+1})||_2 < \varepsilon_{atol}
$$

$$
||F(Y_i^{k+1})||_2 < \varepsilon_{rtol} ||F(Y_i^k)||_2
$$

$$
||\delta Y^{k+1}||_2 < \varepsilon_{stol}
$$

Solution of implicit equations

 \triangleright LU-SGS – linearization w.r.t. Qⁿ

 $AD²$

Jameson and Yoon, 1987, *AIAAJ* Yoon and Jameson, 1988, *AIAAJ*

$$
\alpha + \beta \frac{\partial h}{\partial q} \delta q^n = b
$$

\n
$$
L = \alpha I + \beta (D_x A^+ - A^- + \cdots)
$$

\n
$$
LD^{-1} U \delta q^n = b
$$

\n
$$
D = \alpha I + \beta (A^+ - A^- + \cdots)
$$

\n
$$
U = \alpha I + \beta (D_x^+ A^- + A^+ \cdots)
$$

Dispersion and dissipation errors

- A-stable is NOT sufficient
	- Dispersion and dissipation errors
	- Oscillations of intermediate solutions
	- Numerical instability, increased CPU time

Model equation
$$
\frac{dQ}{dt} = \mu + i\lambda
$$

Amplification
Numerical
Amplification
Exact
Error
$$
G = \frac{Q^{n+1}}{Q^n}
$$

Function

$$
G_{exact} = e^{(\mu + i\lambda)\Delta t}
$$

Error
$$
E = \frac{G}{G_{exact}}
$$

Dispersion and dissipation errors

Dispersion and dissipation errors

Du & Ekaterinaris 2016 4th order, not A-stable

Low-dispersion low-dissipation IMRK

Du & Ekaterinaris (under review), 2016 4th order, not A-stable

▶ Computational grids

Mach number contours

\triangleright Total temperature

 \triangleright Total pressure – symmetry line, y=0

 \triangleright Total temperature – symmetry line, y=0

Convergence histories

LU-SGS, CFL=20, continuity equation

LU-SGS vs IMRK4

▶ Convergence histories, continuity equation

LU-SGS vs IMRK4

Total pressure

LU-SGS vs IMRK4

\triangleright Total temperature

Summary

- The classical 5th order WENO scheme was applied for the computation of a bow shock at $M = 4$.
- \triangleright Implicit marching was used for fast convergence to the steady state
- \triangleright The numerical predictions for all meshes were in fair agreement
- A small amplitude jump of total temperature at the shock was found for all meshes
- \triangleright A the total temperature before and after the shock remained almost constant for the fine mesh

A small increase in total temperature was found with coarser meshes