BI2 - Smooth bump, BL1 - Laminar airfoil & BR1 - Turbulent airfoil

Marshall C. Galbraith¹ and Carl Ollivier-Gooch²

¹Aerospace Computational Design Laboratory Massachusetts Institute of Technology

²Advanced Numerical Simulation Laboratory The University of British Columbia

Jun 4, 2016

Motivation

Order of Accuracy Code Verification

- Is the code correct?
- Non-intrusive (unlike Method of Manufactured Solutions)
 - Can be applied to "off the shelf" codes
- Inviscid: Smooth Gaussian Bump
- Laminar: Re = 1000 Joukowski Airfoil
- RANS: Re = 1e6 Joukowski Airfoil

The Importance of Meshing

- Misnomer: "High-order methods are less sensitive to the mesh"
- Compact schemes are less sensitive to poor shape (e.g. misaligned anisotropy) and mesh irregularity
- Solution/Output accuracy is sensitive to global distribution

Contributions

- James Thomas and Kyle Anderson (NASA Langley, USA)
 - Finite Volume (Fun3D-FV and USM3D)
 - Continuous Galerkin (Fun3D-SUPG)
- Ryan Glasby and Taylor Erwin (U. of Tennessee, USA)
 - Continuous Galerkin (COFFE)
- Phillip Kirshen (MIT, USA) and Micheal List (Wright Patt AFB, USA)
 - Finite Volume (Star CCM)
- Arthur Huang (MIT, USA)
 - Finite Volume (Fluent)
- Carl Olivier Gooch and Gary Yan (U. of British Columbia, Canada)
 - Finite Volume (ANSLib)
- Krzysztof Fidkowski (U. of Michigan, USA)
 - Discontinuous Galerkin (xflow)

- Marshall Galbraith (MIT, USA)
 - Finite Volume (OVERFLOW, CFD++, Fine Turbo, Fluent)
 - Discontinuous Galerkin (ProjectX)
- Shengye Wang, Yaming Chen, Xiaogang Deng (National U. of Defense Technology, China)
 - Weighted Compact Nonlinear Scheme Finite Difference (WCNS)
- Peter Eliasson, Jan Nordström, Marco Kupiainen (Linköping U., Sweden)
 - Summation-by-parts (LiU SBP)

The Goal: Verification

Verification and Validation

- Verification: Is the code correct?
- Validation: Is the mathematical model appropriate?

Software Development Verification

- Unit testing
- Memory checking

- Static analysis
- Continuous integration

Non-Intrusive Order of Accuracy Component Verification

- Test cases designed to verify CFD codes
- Structured quadrilateral and triangle meshes (python scripts)
- Participants required to use provided meshes
 - Mesh independent comparison of codes

Anticipated Order of Accuracy

Scheme	L ₂ Solution Error	Output Functional Error
Galerkin FEM (CG/DG/HDG)	$O\left(h^{P+1} ight)$	$O\left(h^{2P} ight)$
Finite Volume/Difference	$O\left(h^{P+1} ight)$	$O\left(h^{P+1} ight)$
Non-Galerkin Orthogonal FEM	$O\left(h^{P+1} ight)$	$O\left(h^{P+1} ight)$

Galerkin Finite Element Assumptions

- L_2 Solution Error: $O(h^{P+1})$
 - Solution Smoothness: $u \in H^{P+1}$
- Output Functional Error: $O(h^{2P})$
 - Solution, Adjoint Smoothness: $u, \psi \in H^{P+1}$
- Accurate Integration
- Adjoint Consistent
- Asymptotic uniform mesh refinement will eventually observe $O(h^{2P})$
- Optimal mesh distributions will observe $O(h^{2P})$ with fewer DOF

Inviscid Smooth Gaussian Bump

- Used in all previous workshops (but with a variety of meshes)
- Trivial mesh works well
- Verify inviscid fluxes and BC's
- Mach 0.5
- Total pressure and temperature inflow
- Static pressure outflow
- Entropy error: $O(h^{P+1})$
 - Mesh is NOT optimized to minimize entropy error

$$y = 0.0625e^{-25x^2}$$

- Verify viscous fluxes and BC's
- Cusped trailing edge
 - Reduce inviscid singularity
- Mach 0.5, $\alpha = 0^{\circ}$, Re = 1000
- Symmetric: $C_l \equiv 0$
- C-grid: Clustering at stagnation point and trailing edge
 - Nested grids with fixed distribution function
 - 6 months of work to find good distribution

•
$$C_d$$
 error: $O(h^{P+1})$ or $O(h^{2P})$

- Verify RANS model and BC's
 - Negative-SA
- Cusped trailing edge
 - Reduce inviscid singularity
- Mach 0.5, $\alpha = 0^{\circ}$, Re = 1e6
- Symmetric: $C_l \equiv 0$
- C-grid: Clustering at stagnation point and trailing edge
 - Nested grids with fixed distribution function
 - 4 months of work to find good distribution

• C_d error: $O(h^{P+1})$ or $O(h^{2P})$

- Highly reputable workhorse CFD code
- Considered to be well validated

- Highly reputable workhorse CFD code
- Considered to be well *validated*

- Highly reputable workhorse CFD code
- Considered to be well *validated*

- Highly reputable workhorse CFD code
- Considered to be well *validated*

Most Common Mistakes

- Using Sutherland's law instead of constant viscosity
- Lack of precision in reference quantities

Other Outcomes

- 2 Groups fixed force calculation due to $C_l \neq 0$
- 1 Group changed force calculation to residual based to get expected order of accuracy
- 1 Group modified BC implementation
- 3 Groups withdrew results concluding bugs in their codes
 - Lack of time to resolve bugs before workshop

Result Caveats

Inviscid Entropy Error

- Norm \rightarrow One sided
- Exact solution is known

Drag Error

- Possible cross over
- No exact solution

Normalized Time

- (Work Units) \times 5 s
- Represents modern computer

Finite Volume and Finite Difference

Discontinuous Galerkin

Discontinuous Galerkin

Finite Volume and Finite Difference Order of Accuracy

Finite Volume and Finite Difference Order of Accuracy

Finite Volume and Finite Difference Order of Accuracy

Timing

Output Based (Adjoint) Mesh Adaptation

- Contrived problem to alleviate mesh generation
- 6 months to develop grids that observe $O(h^{2P})$

Hanging Node or P-Adaptation

• Local refinement by subdividing or increase polynomial degree of elements

- Restricted to coarse grid topology
- Unlikely to observe $O(h^{2P})$ error decrease

Mesh Optimization via Error Sampling and Synthesis (MOESS)

- Optimization statement:
 - Find mesh distribution that minimizes output error such that the total DOF count is fixed
- Complete remesh on each adaptation
 - Independent of starting grid topology
 - Often observes $O(h^{2P})$ error decrease

Conclusion

Verification Cases

- Inviscid Smooth Bump
 - No sensitivity to mesh
 - Excellent case
- Laminar
 - Mesh sensitive
 - Gives expected rates
- RANS
 - Mesh sensitive
 - Can give expected rates (needs some work)

Possible Contributions by HOW4

- Provide community with verification quality test cases
 - Results and raw data published on website

Backup Slides

