AR1 Summary: Common Research Model

4th International Workshop on High-Order CFD Methods June 4th-5th 2016, Crete Island, Greece

updated after the workshop

Ralf Hartmann, Tobias Leicht

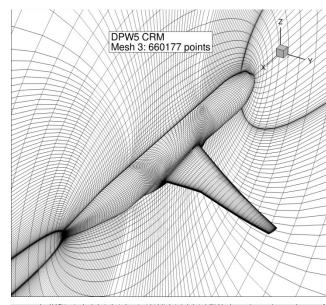
AR1: Common Research Model (CRM)

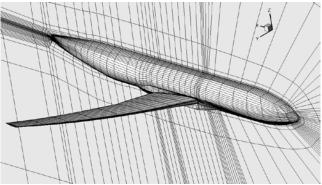
Overview

- steady-state RANS case
- cruise conditions transonic flow
- wing-body configuration similar to modern airliner
- experimental data
- extensively studied in AIAA Drag Prediction Workshops 4 and 5 numerical data (Finite Volume) from many groups (55 contributions from 22 groups in DPW-5)
- References:
 - http://commonresearchmodel.larc.nasa.gov
 - http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw
 for comparison figures are taken from DPW-5 summary presentation
 (http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop5/presentations/DPW5_Presentation_Files/14_DPW5%20Summary-Draft_V7.pdf)

AR1: Common Research Model (CRM) CFD setting

Ma=0.85 Re=5 × 10⁶ target C_L =0.5±0.001

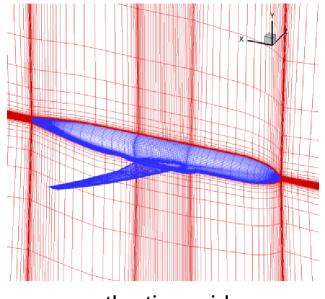

- fully turbulent flow, no transition
- free air, no wind tunnel effects



AR1: Common Research Model (CRM) Meshes

 multi-block structured meshes from DPW-5 not high-order, not suited for agglomeration to HO-macro-elements

 coarse cubic hexahedral HO-meshes by University of Michigan obtained via agglomeration of linear structured meshes (45 k and) 80 k element meshes, provided on workshop website (HioCFD meshes)



AR1: Common Research Model (CRM) Meshes

- Grid family of nested multi-block structured meshes by National University of Defense Technology, China

Table 1: Multi-block HO-grid family.

Level	Name	Label	Cells	$\Delta_1 Y^+$
1	Tiny	G1	1140240	2.155
2	Coarse	G2	3848310	1.437
3	Medium	G3	9121920	1.025
4	Fine	G4	30786480	0.683
5	Extra-Fine	G5	72975360	0.500

the tiny grid

Contributions (this workshop)

- Shengye Wang, Yaming Chen, Guangxue Wang, Wei Liu, Xiaogang Deng National University of Defense Technology (NUDT), China Sun Yat-sen University, China FD, 5th-order (WCNS-E5), Menter-SST on
 - grid family of own block-structured meshes
- Ralf Hartmann
 DLR
 - DG, p=1 (2nd-order), Wilcox-kω, mesh adaptive results driven by
 - residual indicators (res-adapt)
 - adjoint-based indicators for lift (adj-adapt)
 (3rd-order adjoint solves for error estimation)
 - starting from the HioCFD mesh of University of Michigan

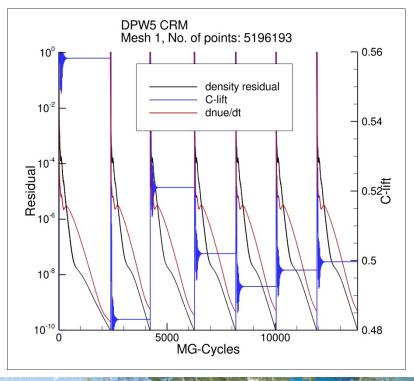
Reference results (already available in HioCFD-3)

- Stefan Langer

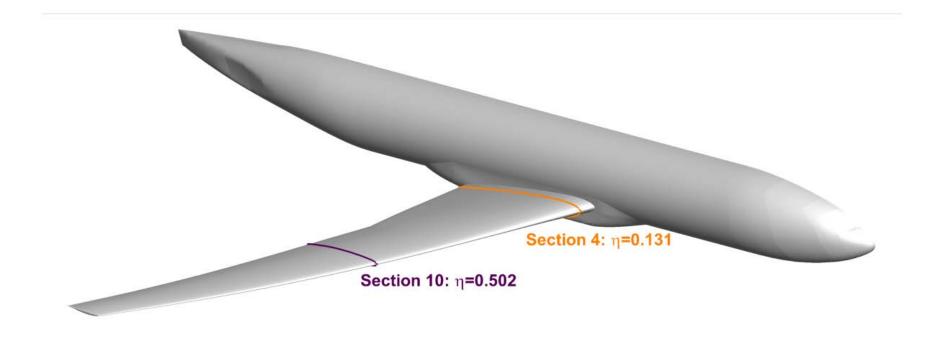
DLR

FV, 2nd-order central scheme, (negative) SA,

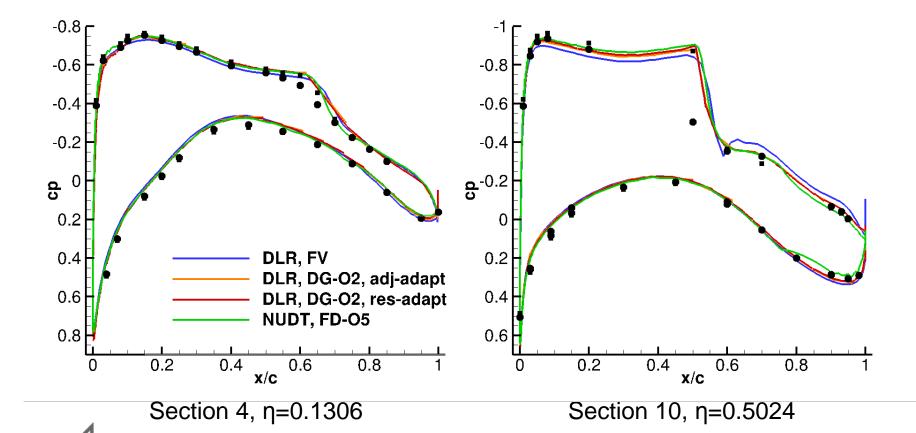
- mesh sequence from DPW-5
- mesh sequence based on global refinement of the HioCFD mesh



Individual Presentation(s)


Reference results

- second order node-centered Finite Volume code (Stefan Langer, DLR)
- central scheme with upwind-based artificial dissipation
- multi-grid based on Galerkin projection
- implicit multi-stage RK smoother
- target lift via AoA-bisection
- results on DPW-5 meshes
 - coarse: 660,177 points
 - fine: 41,231,169 points
- results on HioCFD-based meshes
 - coarse: 79,505 cells
 - fine: 5,088,320 cells

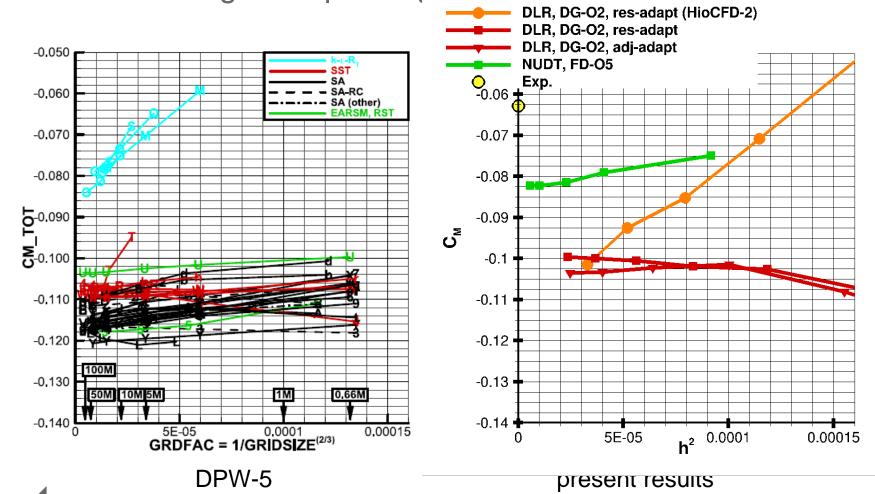


Comparison of results Sectional cuts

Comparison of results Sectional cuts

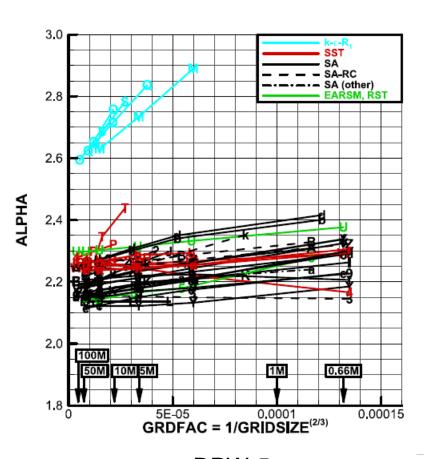
Comparison of results Integral and scalar values

- drag coefficient
- pitching moment coefficient
- angle of attack


close similarity of plots to DPW-5 summary

- same axis ranges
- plotted against $h^2 = \left(\frac{1}{\sqrt[3]{DoF}}\right)^2$
- for second order convergence this yields straight lines

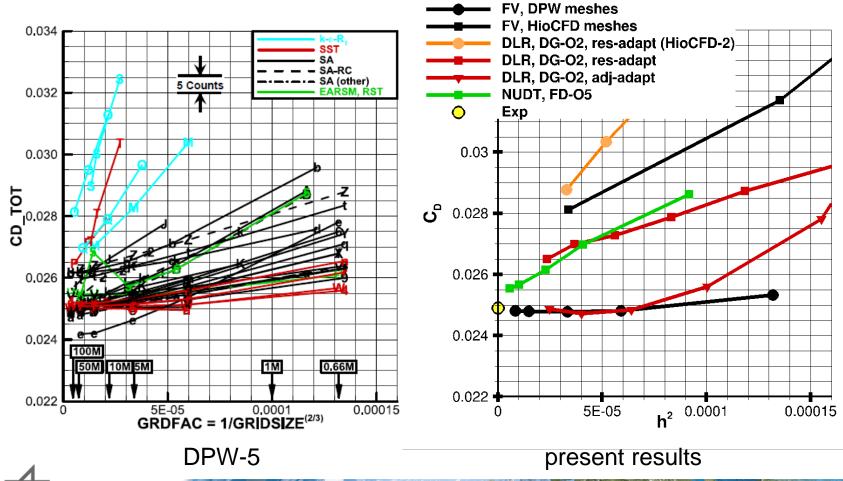
Comparison of results


mesh convergence: pitchina moment

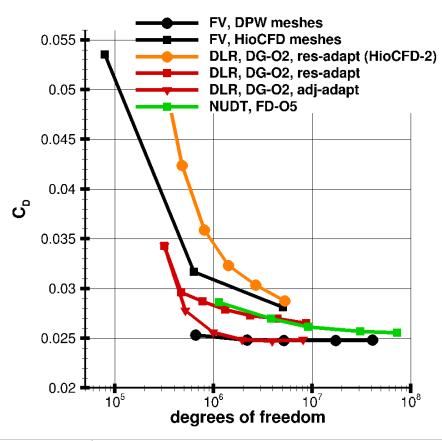
angle of attack

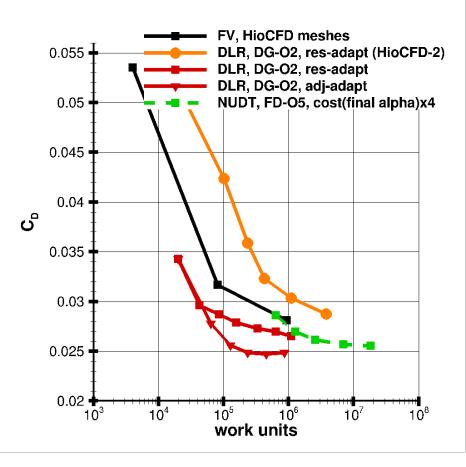
Comparison of results

mesh convergence: angle of attack


DPW-5

present results


Comparison of results


mesh convergence: drag

DLR

Comparison of results mesh convergence: drag

Summary

HioCFD mesh:

- DG with res-adapt and adj-adapt outperformes FV on mesh sequence
- DG with adj-adapt more effective than with res-adapt.

DPW meshes:

- FV on DPW meshes shows surprisingly little variation with mesh density.
 - Mainly an effect of underlying mesh sequence.
 - In particular: error cancellation for pressure drag and friction drag (was shown in HioCFD-3).

Meshes by NUDT:

- FD-O5 results in range of expectation with $C_{\rm M}$ and alpha higher than HiLiftPW-2 results but closer to the experiments.
- Computational cost provided for final alpha only, of e.g. 4 alpha on tiny grid

Conclusions

- Results are reasonable in comparison with DPW-5 results.
 - DG results in the range of FV results.
 - FD results in range with C_M and alpha closer to the experiments
- Shock capturing seems to work reasonably well.
- 3D transonic RANS is still challenging for HO (DG) codes.
- Results indicate some progress...
 - good results with DG-O2, adj-adapt
 - first HO results with FD-O5

